A phased SNP-based classification of sickle cell anemia HBB haplotypes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNIFESP |
Texto Completo: | http://dx.doi.org/10.1186/s12864-017-4013-y http://repositorio.unifesp.br/handle/11600/51394 |
Resumo: | Background: Sickle cell anemia causes severe complications and premature death. Five common beta-globin gene cluster haplotypes are each associated with characteristic fetal hemoglobin (HbF) levels. As HbF is the major modulator of disease severity, classifying patients according to haplotype is useful. The first method of haplotype classification used restriction fragment length polymorphisms (RFLPs) to detect single nucleotide polymorphisms (SNPs) in the beta-globin gene cluster. This is labor intensive, and error prone. Methods: We used genome-wide SNP data imputed to the 1000 Genomes reference panel to obtain phased data distinguishing parental alleles. Results: We successfully haplotyped 813 sickle cell anemia patients previously classified by RFLPs with a concordance >98%. Four SNPs (rs3834466, rs28440105, rs10128556, and rs968857) marking four different restriction enzyme sites unequivocally defined most haplotypes. We were able to assign a haplotype to 86% of samples that were either partially or misclassified using RFLPs. Conclusion: Phased data using only four SNPs allowed unequivocal assignment of a haplotype that was not always possible using a larger number of RFLPs. Given the availability of genome-wide SNP data, our method is rapid and does not require high computational resources. |
id |
UFSP_70ac3e227a1f4848124df8934eee23ee |
---|---|
oai_identifier_str |
oai:repositorio.unifesp.br/:11600/51394 |
network_acronym_str |
UFSP |
network_name_str |
Repositório Institucional da UNIFESP |
repository_id_str |
3465 |
spelling |
A phased SNP-based classification of sickle cell anemia HBB haplotypesSNPsSickle cellHaplotype classificationBackground: Sickle cell anemia causes severe complications and premature death. Five common beta-globin gene cluster haplotypes are each associated with characteristic fetal hemoglobin (HbF) levels. As HbF is the major modulator of disease severity, classifying patients according to haplotype is useful. The first method of haplotype classification used restriction fragment length polymorphisms (RFLPs) to detect single nucleotide polymorphisms (SNPs) in the beta-globin gene cluster. This is labor intensive, and error prone. Methods: We used genome-wide SNP data imputed to the 1000 Genomes reference panel to obtain phased data distinguishing parental alleles. Results: We successfully haplotyped 813 sickle cell anemia patients previously classified by RFLPs with a concordance >98%. Four SNPs (rs3834466, rs28440105, rs10128556, and rs968857) marking four different restriction enzyme sites unequivocally defined most haplotypes. We were able to assign a haplotype to 86% of samples that were either partially or misclassified using RFLPs. Conclusion: Phased data using only four SNPs allowed unequivocal assignment of a haplotype that was not always possible using a larger number of RFLPs. Given the availability of genome-wide SNP data, our method is rapid and does not require high computational resources.Boston Univ, Sch Med, Dept Med, 72 E Concord St, Boston, MA 02118 USABoston Univ, Bioinformat Program, Boston, MA 02215 USAKing Saud Univ, Coll Med, Sickle Cell Dis Res Ctr, Riyadh, Saudi ArabiaKing Saud Univ, Coll Med, Dept Pediat, Riyadh, Saudi ArabiaKing Faisal Univ, Al Omran Sci Chair, Al Hasa, Saudi ArabiaImam Abdulrahman bin Faisal Univ, Inst Res & Med Consultat, Dammam, Saudi ArabiaEscola Paulista Med, Hematol & Blood Transfus Div, São Paulo, BrazilBoston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02118 USAEscola Paulista Med, Hematol & Blood Transfus Div, São Paulo, BrazilWeb of ScienceNIH Bethesda, MDNIH: R01 HL 068970NIH: RC2 HL 101212NIH: R01 87681NIH: T32 HL007501Biomed Central Ltd2019-08-19T11:49:45Z2019-08-19T11:49:45Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion-application/pdfhttp://dx.doi.org/10.1186/s12864-017-4013-yBmc Genomics. London, v. 18, p. -, 2017.10.1186/s12864-017-4013-yWOS000408035900004.pdf1471-2164http://repositorio.unifesp.br/handle/11600/51394WOS:000408035900004enginfo:eu-repo/semantics/openAccessShaikho, Elmutaz M.Farrell, John J.Alsultan, AbdulrahmanQutub, HatemAl-Ali, Amein K.Figueiredo, Maria Stella [UNIFESP]Chui, David H. K.Farrer, Lindsay A.Murphy, George J.Mostoslavsky, GustavoSebastiani, PaolaSteinberg, Martin H.reponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-10T23:13:17Zoai:repositorio.unifesp.br/:11600/51394Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-10T23:13:17Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
dc.title.none.fl_str_mv |
A phased SNP-based classification of sickle cell anemia HBB haplotypes |
title |
A phased SNP-based classification of sickle cell anemia HBB haplotypes |
spellingShingle |
A phased SNP-based classification of sickle cell anemia HBB haplotypes Shaikho, Elmutaz M. SNPs Sickle cell Haplotype classification |
title_short |
A phased SNP-based classification of sickle cell anemia HBB haplotypes |
title_full |
A phased SNP-based classification of sickle cell anemia HBB haplotypes |
title_fullStr |
A phased SNP-based classification of sickle cell anemia HBB haplotypes |
title_full_unstemmed |
A phased SNP-based classification of sickle cell anemia HBB haplotypes |
title_sort |
A phased SNP-based classification of sickle cell anemia HBB haplotypes |
author |
Shaikho, Elmutaz M. |
author_facet |
Shaikho, Elmutaz M. Farrell, John J. Alsultan, Abdulrahman Qutub, Hatem Al-Ali, Amein K. Figueiredo, Maria Stella [UNIFESP] Chui, David H. K. Farrer, Lindsay A. Murphy, George J. Mostoslavsky, Gustavo Sebastiani, Paola Steinberg, Martin H. |
author_role |
author |
author2 |
Farrell, John J. Alsultan, Abdulrahman Qutub, Hatem Al-Ali, Amein K. Figueiredo, Maria Stella [UNIFESP] Chui, David H. K. Farrer, Lindsay A. Murphy, George J. Mostoslavsky, Gustavo Sebastiani, Paola Steinberg, Martin H. |
author2_role |
author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Shaikho, Elmutaz M. Farrell, John J. Alsultan, Abdulrahman Qutub, Hatem Al-Ali, Amein K. Figueiredo, Maria Stella [UNIFESP] Chui, David H. K. Farrer, Lindsay A. Murphy, George J. Mostoslavsky, Gustavo Sebastiani, Paola Steinberg, Martin H. |
dc.subject.por.fl_str_mv |
SNPs Sickle cell Haplotype classification |
topic |
SNPs Sickle cell Haplotype classification |
description |
Background: Sickle cell anemia causes severe complications and premature death. Five common beta-globin gene cluster haplotypes are each associated with characteristic fetal hemoglobin (HbF) levels. As HbF is the major modulator of disease severity, classifying patients according to haplotype is useful. The first method of haplotype classification used restriction fragment length polymorphisms (RFLPs) to detect single nucleotide polymorphisms (SNPs) in the beta-globin gene cluster. This is labor intensive, and error prone. Methods: We used genome-wide SNP data imputed to the 1000 Genomes reference panel to obtain phased data distinguishing parental alleles. Results: We successfully haplotyped 813 sickle cell anemia patients previously classified by RFLPs with a concordance >98%. Four SNPs (rs3834466, rs28440105, rs10128556, and rs968857) marking four different restriction enzyme sites unequivocally defined most haplotypes. We were able to assign a haplotype to 86% of samples that were either partially or misclassified using RFLPs. Conclusion: Phased data using only four SNPs allowed unequivocal assignment of a haplotype that was not always possible using a larger number of RFLPs. Given the availability of genome-wide SNP data, our method is rapid and does not require high computational resources. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2019-08-19T11:49:45Z 2019-08-19T11:49:45Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1186/s12864-017-4013-y Bmc Genomics. London, v. 18, p. -, 2017. 10.1186/s12864-017-4013-y WOS000408035900004.pdf 1471-2164 http://repositorio.unifesp.br/handle/11600/51394 WOS:000408035900004 |
url |
http://dx.doi.org/10.1186/s12864-017-4013-y http://repositorio.unifesp.br/handle/11600/51394 |
identifier_str_mv |
Bmc Genomics. London, v. 18, p. -, 2017. 10.1186/s12864-017-4013-y WOS000408035900004.pdf 1471-2164 WOS:000408035900004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
- application/pdf |
dc.publisher.none.fl_str_mv |
Biomed Central Ltd |
publisher.none.fl_str_mv |
Biomed Central Ltd |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
instname_str |
Universidade Federal de São Paulo (UNIFESP) |
instacron_str |
UNIFESP |
institution |
UNIFESP |
reponame_str |
Repositório Institucional da UNIFESP |
collection |
Repositório Institucional da UNIFESP |
repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
_version_ |
1814268269552467968 |