Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and Electrospinning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNIFESP |
Texto Completo: | https://dx.doi.org/10.1590/1980-5373-MR-2016-0969 https://repositorio.unifesp.br/handle/11600/55288 |
Resumo: | Rotary jet spinning (RJS) and electrospinning are techniques to obtain fibrous scaffolds. RJS is a simple method, which fabricates three-dimensional fibers by exploiting a high-speed rotating nozzle, creating a polymer jet which stretches until solidification, and does not require high voltage. In opposite, electrospinning technique needs the presence of an external electric field to create fiber from the polymeric jet solution. This article investigates both processes using two different biocompatible polymers: Poly(L-lactic acid) (PLLA) and Poly(e-caprolactone) (PCL). Samples were characterized by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimeter, and Fourier-transform infrared spectroscopy. Morphological observations showed the efficiency of both techniques in obtaining nanofibers. Thermal analyses of data indicate immiscible property of different blends and the total solvent evaporation. In vitro cytocompatibility test showed that RJS and electrospinning samples exhibited good cytocompatibility. Based on these results, it may be concluded that the fibers obtained with both technologies are non-cytotoxicity and with good biocompatibility, and might be suitable for applications as scaffold for cell growth. |
id |
UFSP_7c17efff3af934a9112864c2dbcfb72d |
---|---|
oai_identifier_str |
oai:repositorio.unifesp.br/:11600/55288 |
network_acronym_str |
UFSP |
network_name_str |
Repositório Institucional da UNIFESP |
repository_id_str |
3465 |
spelling |
Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and ElectrospinningRotary jet spinningElectrospinningBlendNanofibersBiomaterialsRotary jet spinning (RJS) and electrospinning are techniques to obtain fibrous scaffolds. RJS is a simple method, which fabricates three-dimensional fibers by exploiting a high-speed rotating nozzle, creating a polymer jet which stretches until solidification, and does not require high voltage. In opposite, electrospinning technique needs the presence of an external electric field to create fiber from the polymeric jet solution. This article investigates both processes using two different biocompatible polymers: Poly(L-lactic acid) (PLLA) and Poly(e-caprolactone) (PCL). Samples were characterized by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimeter, and Fourier-transform infrared spectroscopy. Morphological observations showed the efficiency of both techniques in obtaining nanofibers. Thermal analyses of data indicate immiscible property of different blends and the total solvent evaporation. In vitro cytocompatibility test showed that RJS and electrospinning samples exhibited good cytocompatibility. Based on these results, it may be concluded that the fibers obtained with both technologies are non-cytotoxicity and with good biocompatibility, and might be suitable for applications as scaffold for cell growth.Univ Estadual Campinas, Fac Engn Mecan, Campinas, SP, BrazilPontificia Univ Catolica, Sao Paulo, SP, BrazilUniv Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, Santos, SP, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, Santos, SP, BrazilWeb of ScienceCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Biofabris-INCTBiomaterials Laboratory PUC/SP SorocabaFAPESP: 2013/19372-0Univ Fed Sao Carlos, Dept Engenharia Materials2020-07-17T14:03:18Z2020-07-17T14:03:18Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion910-916application/pdfhttps://dx.doi.org/10.1590/1980-5373-MR-2016-0969Materials Research-Ibero-American Journal Of Materials. Sao Carlos, v. 20, p. 910-916, 2017.10.1590/1980-5373-MR-2016-0969S1516-14392017000800910.pdf1516-1439S1516-14392017000800910https://repositorio.unifesp.br/handle/11600/55288WOS:000430187600131engMaterials Research-Ibero-American Journal Of MaterialsSao Carlosinfo:eu-repo/semantics/openAccessVida, Talita AlmeidaMotta, Adriana CristinaSantos, Arnaldo Rodrigues, Jr.Cardoso, Guinea Brasil CamargoBrito, Crystopher Cardoso de [UNIFESP]Zavaglia, Cecília Amélia de Carvalhoreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-10-23T20:11:55Zoai:repositorio.unifesp.br/:11600/55288Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-10-23T20:11:55Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
dc.title.none.fl_str_mv |
Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and Electrospinning |
title |
Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and Electrospinning |
spellingShingle |
Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and Electrospinning Vida, Talita Almeida Rotary jet spinning Electrospinning Blend Nanofibers Biomaterials |
title_short |
Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and Electrospinning |
title_full |
Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and Electrospinning |
title_fullStr |
Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and Electrospinning |
title_full_unstemmed |
Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and Electrospinning |
title_sort |
Fibrous PCL/PLLA Scaffolds Obtained by Rotary Jet Spinning and Electrospinning |
author |
Vida, Talita Almeida |
author_facet |
Vida, Talita Almeida Motta, Adriana Cristina Santos, Arnaldo Rodrigues, Jr. Cardoso, Guinea Brasil Camargo Brito, Crystopher Cardoso de [UNIFESP] Zavaglia, Cecília Amélia de Carvalho |
author_role |
author |
author2 |
Motta, Adriana Cristina Santos, Arnaldo Rodrigues, Jr. Cardoso, Guinea Brasil Camargo Brito, Crystopher Cardoso de [UNIFESP] Zavaglia, Cecília Amélia de Carvalho |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Vida, Talita Almeida Motta, Adriana Cristina Santos, Arnaldo Rodrigues, Jr. Cardoso, Guinea Brasil Camargo Brito, Crystopher Cardoso de [UNIFESP] Zavaglia, Cecília Amélia de Carvalho |
dc.subject.por.fl_str_mv |
Rotary jet spinning Electrospinning Blend Nanofibers Biomaterials |
topic |
Rotary jet spinning Electrospinning Blend Nanofibers Biomaterials |
description |
Rotary jet spinning (RJS) and electrospinning are techniques to obtain fibrous scaffolds. RJS is a simple method, which fabricates three-dimensional fibers by exploiting a high-speed rotating nozzle, creating a polymer jet which stretches until solidification, and does not require high voltage. In opposite, electrospinning technique needs the presence of an external electric field to create fiber from the polymeric jet solution. This article investigates both processes using two different biocompatible polymers: Poly(L-lactic acid) (PLLA) and Poly(e-caprolactone) (PCL). Samples were characterized by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimeter, and Fourier-transform infrared spectroscopy. Morphological observations showed the efficiency of both techniques in obtaining nanofibers. Thermal analyses of data indicate immiscible property of different blends and the total solvent evaporation. In vitro cytocompatibility test showed that RJS and electrospinning samples exhibited good cytocompatibility. Based on these results, it may be concluded that the fibers obtained with both technologies are non-cytotoxicity and with good biocompatibility, and might be suitable for applications as scaffold for cell growth. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2020-07-17T14:03:18Z 2020-07-17T14:03:18Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://dx.doi.org/10.1590/1980-5373-MR-2016-0969 Materials Research-Ibero-American Journal Of Materials. Sao Carlos, v. 20, p. 910-916, 2017. 10.1590/1980-5373-MR-2016-0969 S1516-14392017000800910.pdf 1516-1439 S1516-14392017000800910 https://repositorio.unifesp.br/handle/11600/55288 WOS:000430187600131 |
url |
https://dx.doi.org/10.1590/1980-5373-MR-2016-0969 https://repositorio.unifesp.br/handle/11600/55288 |
identifier_str_mv |
Materials Research-Ibero-American Journal Of Materials. Sao Carlos, v. 20, p. 910-916, 2017. 10.1590/1980-5373-MR-2016-0969 S1516-14392017000800910.pdf 1516-1439 S1516-14392017000800910 WOS:000430187600131 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Materials Research-Ibero-American Journal Of Materials |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
910-916 application/pdf |
dc.coverage.none.fl_str_mv |
Sao Carlos |
dc.publisher.none.fl_str_mv |
Univ Fed Sao Carlos, Dept Engenharia Materials |
publisher.none.fl_str_mv |
Univ Fed Sao Carlos, Dept Engenharia Materials |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
instname_str |
Universidade Federal de São Paulo (UNIFESP) |
instacron_str |
UNIFESP |
institution |
UNIFESP |
reponame_str |
Repositório Institucional da UNIFESP |
collection |
Repositório Institucional da UNIFESP |
repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
_version_ |
1814268386792701952 |