Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono

Detalhes bibliográficos
Autor(a) principal: Oliveira, Sophia La Banca de [UNIFESP]
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5225533
http://repositorio.unifesp.br/handle/11600/50409
Resumo: Sleep deprivation (SD) impairs various cognitive functions, including different types of memory. Various neurotransmitters and neuromodulators signaling pathways are altered by SD, including adenosine signaling. Adenosine is a neuromodulator which acts as the main homeostatic regulator of sleep, its extracellular concentrations raise in various regions of the brain during SD. The behavioral effects of adenosine are dependent mainly on its actions on two receptors, the A1, a Gi protein coupled receptor, and A2A, a Gs protein coupled receptor. A1 receptor activation impairs memory formation, while the role of A2A receptor on memory formation is not well understood yet. Among the main intracellular signaling pathways modulated by adenosine are the protein kinase A (PKA) pathway and the exchange protein activated by cAMP (EPAC) pathway. Both enzimes are involved on the induction of long term potentiation (LTP), a cellular correlate of memory. Considering this background we suggest that adenosine has an important role in the memory impairment caused by SD through the activation of the adenosine receptors on the brain regions recruited during memory formation, such as the hippocampus and the striatum, and by consequent modulation of the PKA and EPAC pathways. To test this hypothesis we first evaluated the effect of 96 hours of SD through the multiple platform modified method on the levels of the A1 and A2A receptors on the hippocampus. We also used the phosphorylation of PKA to infer its activity. We observed that sleep deprivation decreased the levels of A2A receptor and phosphorylation of PKA, but had no effect on the A1 receptor levels. Then we tested the effect of DPCPX, an antagonist of the A1 receptor, on the performance of sleep deprived animals on two memory tasks, the multiple trial inhibitory avoidance (MTIA) and the contextual fear conditioning (CFC), and the effect of an A2A agonist, CGS 21680, and an A2A antagonist, ZM 241385, on the MTIA. The results showed that DPCPX prevented the impairment on the performance on the MTIA, but not on the CFC. While CGS 21680 had no effect on the performance on the MTIA, ZM 241385 impaired the xix performance of the control animals and increased the performance of the sleep deprived animals. We also tested the effect of SD and DPCPX on the levels of the A1 receptors in the phosphorylation of PKA and activation of EPAC in the striatum and hippocampus after the training session of the MTIA. SD increased the levels of A1 receptor on the striatum, but not in the hippocampus, DPCPX had no effect on neither structures. SD decreased PKA phosphorylation on both structures, DPCPX prevented this effect on the striatum, but not on the hippocampus. SD had no effect on the activity of EPAC. Finally, we tested the effect of drugs which act on other neurotransmitter systems on the phosphorylation of PKA on the hippocampus of animals subjected to the training session of the MTIA. We replicated the result that indicated a decrease on PKA phosphorylation and reverted it with the administration of d-ciclosserin, a NMDA coagonist. The alteration on the level of A2A receptors on the hippocampus and A1 receptors in the striatum indicates that SD has an impact on adenosine signaling on both structures. The activation of PKA on the hippocampus in the time interval between 30 minutes and 6 hours after the MTIA training session is necessary for memory consolidation. Its activation is also necessary for the LTP formation in the striatum. Thus, the decrease of the phosphorylation on these structures caused by SD after the MTIA training may be related to the effects of SD on memory. MTIA task has an instrumental component on which structures of the striatum are involved, this does not happen on the CFC, thus the effect of DPCPX on the MTIA, but not on the CFC may be related to the A1 receptors on the striatum, but not on the hippocampus. This result, as well as the increase on the levels of A1 receptors and the reversion of the decrease of PKA phosphorylation on the striatum indicate that the A1 receptors on the striatum have an important role on the performance impairment on MTIA caused by SD. On the other hand, DPCPX did not prevent the impairment on the CFC nor the decrease of the phosphorylation of PKA on the hippocampus, indicating that another neurotransmitter system would be involved on the impairment on this task. The reversion of the decrease of phosphorylation caused by the dciclosserin suggests an involviment of the NMDA receptors.
id UFSP_8461cf875cbeff63e8ab148561509d1b
oai_identifier_str oai:repositorio.unifesp.br/:11600/50409
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sonoRole of adenosine receptores and PKA in the memory impairment caused by sleep deprivationMemorySleepAdenosineLearningMemóriaSonoAdenosinaAprendizagemSleep deprivation (SD) impairs various cognitive functions, including different types of memory. Various neurotransmitters and neuromodulators signaling pathways are altered by SD, including adenosine signaling. Adenosine is a neuromodulator which acts as the main homeostatic regulator of sleep, its extracellular concentrations raise in various regions of the brain during SD. The behavioral effects of adenosine are dependent mainly on its actions on two receptors, the A1, a Gi protein coupled receptor, and A2A, a Gs protein coupled receptor. A1 receptor activation impairs memory formation, while the role of A2A receptor on memory formation is not well understood yet. Among the main intracellular signaling pathways modulated by adenosine are the protein kinase A (PKA) pathway and the exchange protein activated by cAMP (EPAC) pathway. Both enzimes are involved on the induction of long term potentiation (LTP), a cellular correlate of memory. Considering this background we suggest that adenosine has an important role in the memory impairment caused by SD through the activation of the adenosine receptors on the brain regions recruited during memory formation, such as the hippocampus and the striatum, and by consequent modulation of the PKA and EPAC pathways. To test this hypothesis we first evaluated the effect of 96 hours of SD through the multiple platform modified method on the levels of the A1 and A2A receptors on the hippocampus. We also used the phosphorylation of PKA to infer its activity. We observed that sleep deprivation decreased the levels of A2A receptor and phosphorylation of PKA, but had no effect on the A1 receptor levels. Then we tested the effect of DPCPX, an antagonist of the A1 receptor, on the performance of sleep deprived animals on two memory tasks, the multiple trial inhibitory avoidance (MTIA) and the contextual fear conditioning (CFC), and the effect of an A2A agonist, CGS 21680, and an A2A antagonist, ZM 241385, on the MTIA. The results showed that DPCPX prevented the impairment on the performance on the MTIA, but not on the CFC. While CGS 21680 had no effect on the performance on the MTIA, ZM 241385 impaired the xix performance of the control animals and increased the performance of the sleep deprived animals. We also tested the effect of SD and DPCPX on the levels of the A1 receptors in the phosphorylation of PKA and activation of EPAC in the striatum and hippocampus after the training session of the MTIA. SD increased the levels of A1 receptor on the striatum, but not in the hippocampus, DPCPX had no effect on neither structures. SD decreased PKA phosphorylation on both structures, DPCPX prevented this effect on the striatum, but not on the hippocampus. SD had no effect on the activity of EPAC. Finally, we tested the effect of drugs which act on other neurotransmitter systems on the phosphorylation of PKA on the hippocampus of animals subjected to the training session of the MTIA. We replicated the result that indicated a decrease on PKA phosphorylation and reverted it with the administration of d-ciclosserin, a NMDA coagonist. The alteration on the level of A2A receptors on the hippocampus and A1 receptors in the striatum indicates that SD has an impact on adenosine signaling on both structures. The activation of PKA on the hippocampus in the time interval between 30 minutes and 6 hours after the MTIA training session is necessary for memory consolidation. Its activation is also necessary for the LTP formation in the striatum. Thus, the decrease of the phosphorylation on these structures caused by SD after the MTIA training may be related to the effects of SD on memory. MTIA task has an instrumental component on which structures of the striatum are involved, this does not happen on the CFC, thus the effect of DPCPX on the MTIA, but not on the CFC may be related to the A1 receptors on the striatum, but not on the hippocampus. This result, as well as the increase on the levels of A1 receptors and the reversion of the decrease of PKA phosphorylation on the striatum indicate that the A1 receptors on the striatum have an important role on the performance impairment on MTIA caused by SD. On the other hand, DPCPX did not prevent the impairment on the CFC nor the decrease of the phosphorylation of PKA on the hippocampus, indicating that another neurotransmitter system would be involved on the impairment on this task. The reversion of the decrease of phosphorylation caused by the dciclosserin suggests an involviment of the NMDA receptors.A privação de sono (PS) causa prejuízos em várias funções cognitivas, incluindo os diferentes tipos de memória. A sinalização através de vários neurotransmissores e neuromoduladores é alterada pela PS, incluindo a sinalização através da adenosina. Essa molécula é um neuromodulador que age como um regulador homeostático do sono, tendo suas concentrações extracelulares em várias regiões do cérebro aumentadas durante a PS. Os efeitos comportamentais da adenosina se dão principalmente através de dois receptores, os receptores A1, receptores metabotrópicos ligados à proteína Gi, e o A2A, receptores ligados à proteína Gs. A adenosina modula negativamente a formação da memória através dos receptores A1, já o papel dos receptores A2A na formação de memórias ainda não é bem compreendido. Entre as principais vias de sinalização intracelulares moduladas pela adenosina estão as vias da proteína quinase A (PKA) e da proteína trocadora ativada por cAMP (EPAC). Essas duas vias estão envolvidas na indução da potenciação de longo prazo (LTP), um correlato celular da memória. Diante do exposto levantamos a hipótese de que a adenosina desempenharia um papel importante no prejuízo de memória causado pela PS através da ativação dos receptores de adenosina em regiões do cérebro recrutadas durante a formação da memória, como o hipocampo e o estriado, e que esse efeito se daria através da modulação das vias da PKA e EPAC. Para testar essa hipótese primeiramente avaliamos o efeito de 96 horas de PS pelo método das plataformas múltiplas modificado nos níveis dos receptores A1 e A2A no hipocampo, também utilizamos a autofosforilação da PKA como uma forma de inferir a sua atividade. Observamos que os níveis dos receptores A2A encontram-se diminuídos nessa condição, assim como a fosforilação da PKA, não observamos efeito da PS sobre o nível dos receptores A1. Em seguida, testamos o efeito do DPCPX, um antagonista dos receptores A1, no desempenho de animais privados de sono em duas tarefas de memória, a esquiva inibitória de múltiplas tentativas (EIMT) e o condicionamento de medo ao contexto (CMC), e o efeito de um agonista A2A, o CGS xvi 21680, e um antagonista A2A, o ZM 241385, na EIMT. Os resultados mostraram que o DPCPX preveniu o prejuízo no desempenho na EIMT, mas não no CMC. Enquanto o CGS 21680 não teve nenhum efeito sobre o desempenho na EIMT, o ZM 241385 causou um prejuízo no desempenho dos animais controle e melhorou o desempenho dos animais privados de sono. Testamos também o efeito da PS e do DPCPX nos níveis dos receptores A1, na fosforilação da PKA e na ativação da EPAC no hipocampo e estriado após a seção de treino da EIMT. A PS causou um aumento nos níveis dos receptores A1 no estriado, mas não no hipocampo, o DPCPX não teve efeito nos níveis desse receptor em nenhuma das estruturas. A PS causou uma diminuição na fosforilação da PKA nas duas estruturas, o DPCPX preveniu essa diminuição apenas no estriado. A PS não teve efeito na atividade da EPAC nas estruturas observadas. Finalmente, testamos o efeito de drogas que agem em outros sistemas de neurotransmissão na fosforilação da PKA no hipocampo de animais submetidos à PS e treino da EIMT. O resultado de diminuição da fosforilação da PKA no hipocampo foi reproduzido e revertido pela d-ciclosserina, um coagonista dos receptores NMDA. A alteração nos níveis dos receptores A2A no hipocampo e A1 no estriado mostra que a PS altera a sinalização de adenosina em ambas estruturas. A ativação da PKA no hipocampo durante o intervalo de 30 minutos a 6 horas depois do treino da esquiva inibitória é necessária para a consolidação da memória, assim como sua ativação no estriado é necessária para a formação da LTP. Dessa forma a diminuição da forsforilação da PKA causada pela PS nessas estruturas após o treino da EIMT pode estar relacionada com o efeito da PS sobre a memória. Ao contrário da CMC, na EIMT ocorre o envolvimento do estriado, assim o efeito do DPCPX observado na EIMT, mas não no CMC, indica que o efeito do DPCPX pode envolver os receptores A1 do estriado, mas não do hipocampo. Em conjunto com o aumento dos níveis dos receptores A1 e a reversão da diminuição da fosforilação da PKA no estriado, esse resultado indica que os receptores A1 no estriado possuem um papel importante no prejuízo de desempenho na EIMT causada pela PS. Por outro lado, o DPCPX não reverteu o prejuízo no CMC nem a diminuição da fosforilação da PKA xvii no hipocampo, indicando que outro sistema de neurotransmissão estaria envolvido no prejuízo observado nessa tarefa. A reversão da diminuição da fosforilação da PKA no hipocampo pela dciclosserina sugere um envolvimento dos receptores NMDA.Dados abertos - Sucupira - Teses e dissertações (2017)Associação Fundo de Incentivo à Pesquisa (AFIP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CNPq: 443317/2014-3FAPESP: 2015/18605-1Universidade Federal de São Paulo (UNIFESP)Hipólide, Débora Cristina [UNIFESP]http://lattes.cnpq.br/6303382961871353http://lattes.cnpq.br/7411925710894750Universidade Federal de São Paulo (UNIFESP)Oliveira, Sophia La Banca de [UNIFESP]2019-06-19T14:57:52Z2019-06-19T14:57:52Z2017-12-20info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersion121 f.application/pdfhttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5225533OLIVEIRA, Sophia La Banca De. Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono. Tese (Doutorado em Ciências) - Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, 2017.http://repositorio.unifesp.br/handle/11600/50409porSão Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-10T13:14:11Zoai:repositorio.unifesp.br/:11600/50409Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-10T13:14:11Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono
Role of adenosine receptores and PKA in the memory impairment caused by sleep deprivation
title Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono
spellingShingle Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono
Oliveira, Sophia La Banca de [UNIFESP]
Memory
Sleep
Adenosine
Learning
Memória
Sono
Adenosina
Aprendizagem
title_short Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono
title_full Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono
title_fullStr Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono
title_full_unstemmed Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono
title_sort Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono
author Oliveira, Sophia La Banca de [UNIFESP]
author_facet Oliveira, Sophia La Banca de [UNIFESP]
author_role author
dc.contributor.none.fl_str_mv Hipólide, Débora Cristina [UNIFESP]
http://lattes.cnpq.br/6303382961871353
http://lattes.cnpq.br/7411925710894750
Universidade Federal de São Paulo (UNIFESP)
dc.contributor.author.fl_str_mv Oliveira, Sophia La Banca de [UNIFESP]
dc.subject.por.fl_str_mv Memory
Sleep
Adenosine
Learning
Memória
Sono
Adenosina
Aprendizagem
topic Memory
Sleep
Adenosine
Learning
Memória
Sono
Adenosina
Aprendizagem
description Sleep deprivation (SD) impairs various cognitive functions, including different types of memory. Various neurotransmitters and neuromodulators signaling pathways are altered by SD, including adenosine signaling. Adenosine is a neuromodulator which acts as the main homeostatic regulator of sleep, its extracellular concentrations raise in various regions of the brain during SD. The behavioral effects of adenosine are dependent mainly on its actions on two receptors, the A1, a Gi protein coupled receptor, and A2A, a Gs protein coupled receptor. A1 receptor activation impairs memory formation, while the role of A2A receptor on memory formation is not well understood yet. Among the main intracellular signaling pathways modulated by adenosine are the protein kinase A (PKA) pathway and the exchange protein activated by cAMP (EPAC) pathway. Both enzimes are involved on the induction of long term potentiation (LTP), a cellular correlate of memory. Considering this background we suggest that adenosine has an important role in the memory impairment caused by SD through the activation of the adenosine receptors on the brain regions recruited during memory formation, such as the hippocampus and the striatum, and by consequent modulation of the PKA and EPAC pathways. To test this hypothesis we first evaluated the effect of 96 hours of SD through the multiple platform modified method on the levels of the A1 and A2A receptors on the hippocampus. We also used the phosphorylation of PKA to infer its activity. We observed that sleep deprivation decreased the levels of A2A receptor and phosphorylation of PKA, but had no effect on the A1 receptor levels. Then we tested the effect of DPCPX, an antagonist of the A1 receptor, on the performance of sleep deprived animals on two memory tasks, the multiple trial inhibitory avoidance (MTIA) and the contextual fear conditioning (CFC), and the effect of an A2A agonist, CGS 21680, and an A2A antagonist, ZM 241385, on the MTIA. The results showed that DPCPX prevented the impairment on the performance on the MTIA, but not on the CFC. While CGS 21680 had no effect on the performance on the MTIA, ZM 241385 impaired the xix performance of the control animals and increased the performance of the sleep deprived animals. We also tested the effect of SD and DPCPX on the levels of the A1 receptors in the phosphorylation of PKA and activation of EPAC in the striatum and hippocampus after the training session of the MTIA. SD increased the levels of A1 receptor on the striatum, but not in the hippocampus, DPCPX had no effect on neither structures. SD decreased PKA phosphorylation on both structures, DPCPX prevented this effect on the striatum, but not on the hippocampus. SD had no effect on the activity of EPAC. Finally, we tested the effect of drugs which act on other neurotransmitter systems on the phosphorylation of PKA on the hippocampus of animals subjected to the training session of the MTIA. We replicated the result that indicated a decrease on PKA phosphorylation and reverted it with the administration of d-ciclosserin, a NMDA coagonist. The alteration on the level of A2A receptors on the hippocampus and A1 receptors in the striatum indicates that SD has an impact on adenosine signaling on both structures. The activation of PKA on the hippocampus in the time interval between 30 minutes and 6 hours after the MTIA training session is necessary for memory consolidation. Its activation is also necessary for the LTP formation in the striatum. Thus, the decrease of the phosphorylation on these structures caused by SD after the MTIA training may be related to the effects of SD on memory. MTIA task has an instrumental component on which structures of the striatum are involved, this does not happen on the CFC, thus the effect of DPCPX on the MTIA, but not on the CFC may be related to the A1 receptors on the striatum, but not on the hippocampus. This result, as well as the increase on the levels of A1 receptors and the reversion of the decrease of PKA phosphorylation on the striatum indicate that the A1 receptors on the striatum have an important role on the performance impairment on MTIA caused by SD. On the other hand, DPCPX did not prevent the impairment on the CFC nor the decrease of the phosphorylation of PKA on the hippocampus, indicating that another neurotransmitter system would be involved on the impairment on this task. The reversion of the decrease of phosphorylation caused by the dciclosserin suggests an involviment of the NMDA receptors.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-20
2019-06-19T14:57:52Z
2019-06-19T14:57:52Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5225533
OLIVEIRA, Sophia La Banca De. Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono. Tese (Doutorado em Ciências) - Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, 2017.
http://repositorio.unifesp.br/handle/11600/50409
url https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5225533
http://repositorio.unifesp.br/handle/11600/50409
identifier_str_mv OLIVEIRA, Sophia La Banca De. Papel dos receptores de adenosina e da PKA no prejuízo de memória causado pela privação de sono. Tese (Doutorado em Ciências) - Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, 2017.
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 121 f.
application/pdf
dc.coverage.none.fl_str_mv São Paulo
dc.publisher.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
publisher.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1814268440746131456