INEXACT RESTORATION METHOD for DERIVATIVE-FREE OPTIMIZATION WITH SMOOTH CONSTRAINTS

Detalhes bibliográficos
Autor(a) principal: Bueno, Luis Felipe [UNIFESP]
Data de Publicação: 2013
Outros Autores: Friedlander, A., Martinez, J. M., Sobral, F. N. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: http://dx.doi.org/10.1137/110856253
http://repositorio.unifesp.br/handle/11600/35676
Resumo: A new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. the method is based on the inexact restoration framework, by means of which each iteration is divided in two phases. in the first phase one considers only the constraints, in order to improve feasibility. in the second phase one minimizes a suitable objective function subject to a linear approximation of the constraints. the second phase must be solved using derivative-free methods. An algorithm introduced recently by Kolda, Lewis, and Torczon for linearly constrained derivative-free optimization is employed for this purpose. Under usual assumptions, convergence to stationary points is proved. A computer implementation is described and numerical experiments are presented.
id UFSP_861c491534a50f7bf0ff66be271e11d4
oai_identifier_str oai:repositorio.unifesp.br/:11600/35676
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling INEXACT RESTORATION METHOD for DERIVATIVE-FREE OPTIMIZATION WITH SMOOTH CONSTRAINTSinexact restorationderivative-free optimizationglobal convergencenumerical experimentsA new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. the method is based on the inexact restoration framework, by means of which each iteration is divided in two phases. in the first phase one considers only the constraints, in order to improve feasibility. in the second phase one minimizes a suitable objective function subject to a linear approximation of the constraints. the second phase must be solved using derivative-free methods. An algorithm introduced recently by Kolda, Lewis, and Torczon for linearly constrained derivative-free optimization is employed for this purpose. Under usual assumptions, convergence to stationary points is proved. A computer implementation is described and numerical experiments are presented.Universidade Federal de São Paulo, Dept Sci & Technol, Sao Jose Dos Campos, SP, BrazilUniv Estadual Campinas, Inst Math Stat & Sci Comp, Dept Appl Math, Campinas, SP, BrazilItau Unibanco, Div Res & Dev, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Sci & Technol, Sao Jose Dos Campos, SP, BrazilWeb of ScienceConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CEPID-Industrial MathematicsFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq: E-26/171.164/2003-APQ1CEPID-Industrial Mathematics: FAPESP 2011-51305-0FAPESP: 03/09169-6FAPESP: 06/53768-0FAPESP: 07/06663-0FAPESP: 08/00468-4Siam PublicationsUniversidade Federal de São Paulo (UNIFESP)Universidade Estadual de Campinas (UNICAMP)Itau UnibancoBueno, Luis Felipe [UNIFESP]Friedlander, A.Martinez, J. M.Sobral, F. N. C.2016-01-24T14:30:52Z2016-01-24T14:30:52Z2013-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion1189-1213application/pdfhttp://dx.doi.org/10.1137/110856253Siam Journal On Optimization. Philadelphia: Siam Publications, v. 23, n. 2, p. 1189-1213, 2013.10.1137/110856253WOS000321044000022.pdf1052-6234http://repositorio.unifesp.br/handle/11600/35676WOS:000321044000022engSiam Journal On Optimizationinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-08T17:14:53Zoai:repositorio.unifesp.br/:11600/35676Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-08T17:14:53Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv INEXACT RESTORATION METHOD for DERIVATIVE-FREE OPTIMIZATION WITH SMOOTH CONSTRAINTS
title INEXACT RESTORATION METHOD for DERIVATIVE-FREE OPTIMIZATION WITH SMOOTH CONSTRAINTS
spellingShingle INEXACT RESTORATION METHOD for DERIVATIVE-FREE OPTIMIZATION WITH SMOOTH CONSTRAINTS
Bueno, Luis Felipe [UNIFESP]
inexact restoration
derivative-free optimization
global convergence
numerical experiments
title_short INEXACT RESTORATION METHOD for DERIVATIVE-FREE OPTIMIZATION WITH SMOOTH CONSTRAINTS
title_full INEXACT RESTORATION METHOD for DERIVATIVE-FREE OPTIMIZATION WITH SMOOTH CONSTRAINTS
title_fullStr INEXACT RESTORATION METHOD for DERIVATIVE-FREE OPTIMIZATION WITH SMOOTH CONSTRAINTS
title_full_unstemmed INEXACT RESTORATION METHOD for DERIVATIVE-FREE OPTIMIZATION WITH SMOOTH CONSTRAINTS
title_sort INEXACT RESTORATION METHOD for DERIVATIVE-FREE OPTIMIZATION WITH SMOOTH CONSTRAINTS
author Bueno, Luis Felipe [UNIFESP]
author_facet Bueno, Luis Felipe [UNIFESP]
Friedlander, A.
Martinez, J. M.
Sobral, F. N. C.
author_role author
author2 Friedlander, A.
Martinez, J. M.
Sobral, F. N. C.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
Universidade Estadual de Campinas (UNICAMP)
Itau Unibanco
dc.contributor.author.fl_str_mv Bueno, Luis Felipe [UNIFESP]
Friedlander, A.
Martinez, J. M.
Sobral, F. N. C.
dc.subject.por.fl_str_mv inexact restoration
derivative-free optimization
global convergence
numerical experiments
topic inexact restoration
derivative-free optimization
global convergence
numerical experiments
description A new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. the method is based on the inexact restoration framework, by means of which each iteration is divided in two phases. in the first phase one considers only the constraints, in order to improve feasibility. in the second phase one minimizes a suitable objective function subject to a linear approximation of the constraints. the second phase must be solved using derivative-free methods. An algorithm introduced recently by Kolda, Lewis, and Torczon for linearly constrained derivative-free optimization is employed for this purpose. Under usual assumptions, convergence to stationary points is proved. A computer implementation is described and numerical experiments are presented.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01
2016-01-24T14:30:52Z
2016-01-24T14:30:52Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1137/110856253
Siam Journal On Optimization. Philadelphia: Siam Publications, v. 23, n. 2, p. 1189-1213, 2013.
10.1137/110856253
WOS000321044000022.pdf
1052-6234
http://repositorio.unifesp.br/handle/11600/35676
WOS:000321044000022
url http://dx.doi.org/10.1137/110856253
http://repositorio.unifesp.br/handle/11600/35676
identifier_str_mv Siam Journal On Optimization. Philadelphia: Siam Publications, v. 23, n. 2, p. 1189-1213, 2013.
10.1137/110856253
WOS000321044000022.pdf
1052-6234
WOS:000321044000022
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Siam Journal On Optimization
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1189-1213
application/pdf
dc.publisher.none.fl_str_mv Siam Publications
publisher.none.fl_str_mv Siam Publications
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1814268389815746560