Synthesis and Study of Fe-Doped Bi2S3 Semimagnetic Nanocrystals Embedded in a Glass Matrix

Detalhes bibliográficos
Autor(a) principal: Silva, Ricardo Souza
Data de Publicação: 2017
Outros Autores: Mikhail, Hanna Degani, Guimaraes, Eder Vinícius, Gonçalves, Elis Regina, Cano, Nilo Francisco [UNIFESP], Dantas, Noelio Oliveira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: https://dx.doi.org/10.3390/molecules22071142
https://repositorio.unifesp.br/handle/11600/53552
Resumo: Iron-doped bismuth sulphide (Bi2-xFexS3) nanocrystals have been successfully synthesized in a glass matrix using the fusion method. Transmission electron microscopy images and energy dispersive spectroscopy data clearly show that nanocrystals are formed with an average diameter of 7-9 nm, depending on the thermic treatment time, and contain Fe in their chemical composition. Magnetic force microscopy measurements show magnetic phase contrast patterns, providing further evidence of Fe incorporation in the nanocrystal structure. The electron paramagnetic resonance spectra displayed Fe3+ typical characteristics, with spin of 5/2 in the 3d(5) electronic state, thereby confirming the expected trivalent state of Fe ions in the Bi2S3 host structure. Results from the spin polarized density functional theory simulations, for the bulk Fe-doped Bi2S3 counterpart, corroborate the experimental fact that the volume of the unit cell decreases with Fe substitutionally doping at Bi1 and Bi2 sites. The Bader charge analysis indicated a pseudo valency charge of 1.322| e | on Fe-Bi1 and 1.306 | e | on Fe-Bi2 ions, and a spin contribution for the magnetic moment of 5.0 mu(B) per unit cell containing one Fe atom. Electronic band structures showed that the (indirect) band gap changes from 1.17 eV for Bi2S3 bulk to 0.71 eV (0.74 eV) for Bi2S3: Fe-Bi1 (Bi2S3: Fe-Bi2). These results are compatible with the 3d(5) high-spin state of Fe3+, and are in agreement with the experimental results, within the density functional theory accuracy.
id UFSP_bf7df50fd2a83ff8c8c0c09a3f5f553f
oai_identifier_str oai:repositorio.unifesp.br:11600/53552
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling Silva, Ricardo SouzaMikhail, Hanna DeganiGuimaraes, Eder ViníciusGonçalves, Elis ReginaCano, Nilo Francisco [UNIFESP]Dantas, Noelio OliveiraUniversidade Federal de São Paulo (UNIFESP)2020-06-26T16:30:27Z2020-06-26T16:30:27Z2017https://dx.doi.org/10.3390/molecules22071142Molecules. Basel, v. 22, n. 7, p. -, 2017.1420-3049https://repositorio.unifesp.br/handle/11600/53552WOS000406621300116.pdf10.3390/molecules22071142WOS:000406621300116Iron-doped bismuth sulphide (Bi2-xFexS3) nanocrystals have been successfully synthesized in a glass matrix using the fusion method. Transmission electron microscopy images and energy dispersive spectroscopy data clearly show that nanocrystals are formed with an average diameter of 7-9 nm, depending on the thermic treatment time, and contain Fe in their chemical composition. Magnetic force microscopy measurements show magnetic phase contrast patterns, providing further evidence of Fe incorporation in the nanocrystal structure. The electron paramagnetic resonance spectra displayed Fe3+ typical characteristics, with spin of 5/2 in the 3d(5) electronic state, thereby confirming the expected trivalent state of Fe ions in the Bi2S3 host structure. Results from the spin polarized density functional theory simulations, for the bulk Fe-doped Bi2S3 counterpart, corroborate the experimental fact that the volume of the unit cell decreases with Fe substitutionally doping at Bi1 and Bi2 sites. The Bader charge analysis indicated a pseudo valency charge of 1.322| e | on Fe-Bi1 and 1.306 | e | on Fe-Bi2 ions, and a spin contribution for the magnetic moment of 5.0 mu(B) per unit cell containing one Fe atom. Electronic band structures showed that the (indirect) band gap changes from 1.17 eV for Bi2S3 bulk to 0.71 eV (0.74 eV) for Bi2S3: Fe-Bi1 (Bi2S3: Fe-Bi2). These results are compatible with the 3d(5) high-spin state of Fe3+, and are in agreement with the experimental results, within the density functional theory accuracy.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Rede Mineira de Quimica (RQ-MG)Univ Fed Triangulo Mineiro, ICENE, Dept Fis, BR-38025180 Uberaba, MG, BrazilUniv Fed Triangulo Mineiro, ICTE, Dept Engn Mecan, BR-38064200 Uberaba, MG, BrazilUniv Fed Sao Paulo, Inst Mar, BR-11070100 Sao Paulo, BrazilUniv Fed Uberlandia, Inst Fis, LNMIS, BR-38400902 Uberlandia, MG, BrazilUniv Fed Sao Paulo, Inst Mar, BR-11070100 Sao Paulo, BrazilFAPEMIG: CEX-RED-00010-4Web of Science-engMdpi AgMoleculesFe-doped bismuth sulphideNanocrystal synthesisDensity functional theorySynthesis and Study of Fe-Doped Bi2S3 Semimagnetic Nanocrystals Embedded in a Glass Matrixinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBasel227info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESPORIGINALWOS000406621300116.pdfapplication/pdf2621844${dspace.ui.url}/bitstream/11600/53552/1/WOS000406621300116.pdff12f21e886aea2eb82823312c1340eb1MD51open accessTEXTWOS000406621300116.pdf.txtWOS000406621300116.pdf.txtExtracted texttext/plain39435${dspace.ui.url}/bitstream/11600/53552/5/WOS000406621300116.pdf.txt4fa424ec506fa9551aa84687029a1fe9MD55open accessTHUMBNAILWOS000406621300116.pdf.jpgWOS000406621300116.pdf.jpgIM Thumbnailimage/jpeg6601${dspace.ui.url}/bitstream/11600/53552/7/WOS000406621300116.pdf.jpg4c8d1c877c031cf641e7e4539da63a20MD57open access11600/535522023-06-05 19:39:51.543open accessoai:repositorio.unifesp.br:11600/53552Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestopendoar:34652023-06-05T22:39:51Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.en.fl_str_mv Synthesis and Study of Fe-Doped Bi2S3 Semimagnetic Nanocrystals Embedded in a Glass Matrix
title Synthesis and Study of Fe-Doped Bi2S3 Semimagnetic Nanocrystals Embedded in a Glass Matrix
spellingShingle Synthesis and Study of Fe-Doped Bi2S3 Semimagnetic Nanocrystals Embedded in a Glass Matrix
Silva, Ricardo Souza
Fe-doped bismuth sulphide
Nanocrystal synthesis
Density functional theory
title_short Synthesis and Study of Fe-Doped Bi2S3 Semimagnetic Nanocrystals Embedded in a Glass Matrix
title_full Synthesis and Study of Fe-Doped Bi2S3 Semimagnetic Nanocrystals Embedded in a Glass Matrix
title_fullStr Synthesis and Study of Fe-Doped Bi2S3 Semimagnetic Nanocrystals Embedded in a Glass Matrix
title_full_unstemmed Synthesis and Study of Fe-Doped Bi2S3 Semimagnetic Nanocrystals Embedded in a Glass Matrix
title_sort Synthesis and Study of Fe-Doped Bi2S3 Semimagnetic Nanocrystals Embedded in a Glass Matrix
author Silva, Ricardo Souza
author_facet Silva, Ricardo Souza
Mikhail, Hanna Degani
Guimaraes, Eder Vinícius
Gonçalves, Elis Regina
Cano, Nilo Francisco [UNIFESP]
Dantas, Noelio Oliveira
author_role author
author2 Mikhail, Hanna Degani
Guimaraes, Eder Vinícius
Gonçalves, Elis Regina
Cano, Nilo Francisco [UNIFESP]
Dantas, Noelio Oliveira
author2_role author
author
author
author
author
dc.contributor.institution.none.fl_str_mv Universidade Federal de São Paulo (UNIFESP)
dc.contributor.author.fl_str_mv Silva, Ricardo Souza
Mikhail, Hanna Degani
Guimaraes, Eder Vinícius
Gonçalves, Elis Regina
Cano, Nilo Francisco [UNIFESP]
Dantas, Noelio Oliveira
dc.subject.eng.fl_str_mv Fe-doped bismuth sulphide
Nanocrystal synthesis
Density functional theory
topic Fe-doped bismuth sulphide
Nanocrystal synthesis
Density functional theory
description Iron-doped bismuth sulphide (Bi2-xFexS3) nanocrystals have been successfully synthesized in a glass matrix using the fusion method. Transmission electron microscopy images and energy dispersive spectroscopy data clearly show that nanocrystals are formed with an average diameter of 7-9 nm, depending on the thermic treatment time, and contain Fe in their chemical composition. Magnetic force microscopy measurements show magnetic phase contrast patterns, providing further evidence of Fe incorporation in the nanocrystal structure. The electron paramagnetic resonance spectra displayed Fe3+ typical characteristics, with spin of 5/2 in the 3d(5) electronic state, thereby confirming the expected trivalent state of Fe ions in the Bi2S3 host structure. Results from the spin polarized density functional theory simulations, for the bulk Fe-doped Bi2S3 counterpart, corroborate the experimental fact that the volume of the unit cell decreases with Fe substitutionally doping at Bi1 and Bi2 sites. The Bader charge analysis indicated a pseudo valency charge of 1.322| e | on Fe-Bi1 and 1.306 | e | on Fe-Bi2 ions, and a spin contribution for the magnetic moment of 5.0 mu(B) per unit cell containing one Fe atom. Electronic band structures showed that the (indirect) band gap changes from 1.17 eV for Bi2S3 bulk to 0.71 eV (0.74 eV) for Bi2S3: Fe-Bi1 (Bi2S3: Fe-Bi2). These results are compatible with the 3d(5) high-spin state of Fe3+, and are in agreement with the experimental results, within the density functional theory accuracy.
publishDate 2017
dc.date.issued.fl_str_mv 2017
dc.date.accessioned.fl_str_mv 2020-06-26T16:30:27Z
dc.date.available.fl_str_mv 2020-06-26T16:30:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.].fl_str_mv https://dx.doi.org/10.3390/molecules22071142
dc.identifier.citation.fl_str_mv Molecules. Basel, v. 22, n. 7, p. -, 2017.
dc.identifier.uri.fl_str_mv https://repositorio.unifesp.br/handle/11600/53552
dc.identifier.issn.none.fl_str_mv 1420-3049
dc.identifier.file.none.fl_str_mv WOS000406621300116.pdf
dc.identifier.doi.none.fl_str_mv 10.3390/molecules22071142
dc.identifier.wos.none.fl_str_mv WOS:000406621300116
url https://dx.doi.org/10.3390/molecules22071142
https://repositorio.unifesp.br/handle/11600/53552
identifier_str_mv Molecules. Basel, v. 22, n. 7, p. -, 2017.
1420-3049
WOS000406621300116.pdf
10.3390/molecules22071142
WOS:000406621300116
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Molecules
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv -
dc.coverage.none.fl_str_mv Basel
dc.publisher.none.fl_str_mv Mdpi Ag
publisher.none.fl_str_mv Mdpi Ag
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
bitstream.url.fl_str_mv ${dspace.ui.url}/bitstream/11600/53552/1/WOS000406621300116.pdf
${dspace.ui.url}/bitstream/11600/53552/5/WOS000406621300116.pdf.txt
${dspace.ui.url}/bitstream/11600/53552/7/WOS000406621300116.pdf.jpg
bitstream.checksum.fl_str_mv f12f21e886aea2eb82823312c1340eb1
4fa424ec506fa9551aa84687029a1fe9
4c8d1c877c031cf641e7e4539da63a20
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv
_version_ 1802764236335611904