Data-intensive analysis of HIV mutations

Detalhes bibliográficos
Autor(a) principal: Ozahata, Mina Cintho
Data de Publicação: 2015
Outros Autores: Sabino, Ester Cerdeira, Diaz, Ricardo Sobhie [UNIFESP], Cesar, Roberto M., Ferreira, Joao Eduardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: http://dx.doi.org/10.1186/s12859-015-0452-0
http://repositorio.unifesp.br/handle/11600/38751
Resumo: Background: in this study, clustering was performed using a bitmap representation of HIV reverse transcriptase and protease sequences, to produce an unsupervised classification of HIV sequences. the classification will aid our understanding of the interactions between mutations and drug resistance. 10,229 HIV genomic sequences from the protease and reverse transcriptase regions of the pol gene and antiretroviral resistant related mutations represented in an 82-dimensional binary vector space were analyzed.Results: A new cluster representation was proposed using an image inspired by microarray data, such that the rows in the image represented the protein sequences from the genotype data and the columns represented presence or absence of mutations in each protein position. the visualization of the clusters showed that some mutations frequently occur together and are probably related to an epistatic phenomenon.Conclusion: We described a methodology based on the application of a pattern recognition algorithm using binary data to suggest clusters of mutations that can easily be discriminated by cluster viewing schemes.
id UFSP_c4192259acb2a3c11c1f5694a74f1439
oai_identifier_str oai:repositorio.unifesp.br/:11600/38751
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling Data-intensive analysis of HIV mutationsHIVMutationClusterBackground: in this study, clustering was performed using a bitmap representation of HIV reverse transcriptase and protease sequences, to produce an unsupervised classification of HIV sequences. the classification will aid our understanding of the interactions between mutations and drug resistance. 10,229 HIV genomic sequences from the protease and reverse transcriptase regions of the pol gene and antiretroviral resistant related mutations represented in an 82-dimensional binary vector space were analyzed.Results: A new cluster representation was proposed using an image inspired by microarray data, such that the rows in the image represented the protein sequences from the genotype data and the columns represented presence or absence of mutations in each protein position. the visualization of the clusters showed that some mutations frequently occur together and are probably related to an epistatic phenomenon.Conclusion: We described a methodology based on the application of a pattern recognition algorithm using binary data to suggest clusters of mutations that can easily be discriminated by cluster viewing schemes.Univ São Paulo, Dept Comp Sci DCC, BR-05508090 São Paulo, SP, BrazilSangue Fdn, Dept Mol Biol, Serol Div, BR-05403000 São Paulo, SP, BrazilUniversidade Federal de São Paulo, BR-04039032 São Paulo, SP, BrazilUniversidade Federal de São Paulo, BR-04039032 São Paulo, SP, BrazilWeb of ScienceFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)PRP-USPFAPESP: 11/50761-2Biomed Central LtdUniversidade de São Paulo (USP)Sangue FdnUniversidade Federal de São Paulo (UNIFESP)Ozahata, Mina CinthoSabino, Ester CerdeiraDiaz, Ricardo Sobhie [UNIFESP]Cesar, Roberto M.Ferreira, Joao Eduardo2016-01-24T14:40:03Z2016-01-24T14:40:03Z2015-02-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion23application/pdfhttp://dx.doi.org/10.1186/s12859-015-0452-0Bmc Bioinformatics. London: Biomed Central Ltd, v. 16, 23 p., 2015.10.1186/s12859-015-0452-0WOS000350060100001.pdf1471-2105http://repositorio.unifesp.br/handle/11600/38751WOS:000350060100001engBmc Bioinformaticsinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-01T06:39:15Zoai:repositorio.unifesp.br/:11600/38751Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-01T06:39:15Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv Data-intensive analysis of HIV mutations
title Data-intensive analysis of HIV mutations
spellingShingle Data-intensive analysis of HIV mutations
Ozahata, Mina Cintho
HIV
Mutation
Cluster
title_short Data-intensive analysis of HIV mutations
title_full Data-intensive analysis of HIV mutations
title_fullStr Data-intensive analysis of HIV mutations
title_full_unstemmed Data-intensive analysis of HIV mutations
title_sort Data-intensive analysis of HIV mutations
author Ozahata, Mina Cintho
author_facet Ozahata, Mina Cintho
Sabino, Ester Cerdeira
Diaz, Ricardo Sobhie [UNIFESP]
Cesar, Roberto M.
Ferreira, Joao Eduardo
author_role author
author2 Sabino, Ester Cerdeira
Diaz, Ricardo Sobhie [UNIFESP]
Cesar, Roberto M.
Ferreira, Joao Eduardo
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Sangue Fdn
Universidade Federal de São Paulo (UNIFESP)
dc.contributor.author.fl_str_mv Ozahata, Mina Cintho
Sabino, Ester Cerdeira
Diaz, Ricardo Sobhie [UNIFESP]
Cesar, Roberto M.
Ferreira, Joao Eduardo
dc.subject.por.fl_str_mv HIV
Mutation
Cluster
topic HIV
Mutation
Cluster
description Background: in this study, clustering was performed using a bitmap representation of HIV reverse transcriptase and protease sequences, to produce an unsupervised classification of HIV sequences. the classification will aid our understanding of the interactions between mutations and drug resistance. 10,229 HIV genomic sequences from the protease and reverse transcriptase regions of the pol gene and antiretroviral resistant related mutations represented in an 82-dimensional binary vector space were analyzed.Results: A new cluster representation was proposed using an image inspired by microarray data, such that the rows in the image represented the protein sequences from the genotype data and the columns represented presence or absence of mutations in each protein position. the visualization of the clusters showed that some mutations frequently occur together and are probably related to an epistatic phenomenon.Conclusion: We described a methodology based on the application of a pattern recognition algorithm using binary data to suggest clusters of mutations that can easily be discriminated by cluster viewing schemes.
publishDate 2015
dc.date.none.fl_str_mv 2015-02-05
2016-01-24T14:40:03Z
2016-01-24T14:40:03Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1186/s12859-015-0452-0
Bmc Bioinformatics. London: Biomed Central Ltd, v. 16, 23 p., 2015.
10.1186/s12859-015-0452-0
WOS000350060100001.pdf
1471-2105
http://repositorio.unifesp.br/handle/11600/38751
WOS:000350060100001
url http://dx.doi.org/10.1186/s12859-015-0452-0
http://repositorio.unifesp.br/handle/11600/38751
identifier_str_mv Bmc Bioinformatics. London: Biomed Central Ltd, v. 16, 23 p., 2015.
10.1186/s12859-015-0452-0
WOS000350060100001.pdf
1471-2105
WOS:000350060100001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Bmc Bioinformatics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 23
application/pdf
dc.publisher.none.fl_str_mv Biomed Central Ltd
publisher.none.fl_str_mv Biomed Central Ltd
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1814268440815337472