Data-intensive analysis of HIV mutations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNIFESP |
Texto Completo: | http://dx.doi.org/10.1186/s12859-015-0452-0 http://repositorio.unifesp.br/handle/11600/38751 |
Resumo: | Background: in this study, clustering was performed using a bitmap representation of HIV reverse transcriptase and protease sequences, to produce an unsupervised classification of HIV sequences. the classification will aid our understanding of the interactions between mutations and drug resistance. 10,229 HIV genomic sequences from the protease and reverse transcriptase regions of the pol gene and antiretroviral resistant related mutations represented in an 82-dimensional binary vector space were analyzed.Results: A new cluster representation was proposed using an image inspired by microarray data, such that the rows in the image represented the protein sequences from the genotype data and the columns represented presence or absence of mutations in each protein position. the visualization of the clusters showed that some mutations frequently occur together and are probably related to an epistatic phenomenon.Conclusion: We described a methodology based on the application of a pattern recognition algorithm using binary data to suggest clusters of mutations that can easily be discriminated by cluster viewing schemes. |
id |
UFSP_c4192259acb2a3c11c1f5694a74f1439 |
---|---|
oai_identifier_str |
oai:repositorio.unifesp.br/:11600/38751 |
network_acronym_str |
UFSP |
network_name_str |
Repositório Institucional da UNIFESP |
repository_id_str |
3465 |
spelling |
Data-intensive analysis of HIV mutationsHIVMutationClusterBackground: in this study, clustering was performed using a bitmap representation of HIV reverse transcriptase and protease sequences, to produce an unsupervised classification of HIV sequences. the classification will aid our understanding of the interactions between mutations and drug resistance. 10,229 HIV genomic sequences from the protease and reverse transcriptase regions of the pol gene and antiretroviral resistant related mutations represented in an 82-dimensional binary vector space were analyzed.Results: A new cluster representation was proposed using an image inspired by microarray data, such that the rows in the image represented the protein sequences from the genotype data and the columns represented presence or absence of mutations in each protein position. the visualization of the clusters showed that some mutations frequently occur together and are probably related to an epistatic phenomenon.Conclusion: We described a methodology based on the application of a pattern recognition algorithm using binary data to suggest clusters of mutations that can easily be discriminated by cluster viewing schemes.Univ São Paulo, Dept Comp Sci DCC, BR-05508090 São Paulo, SP, BrazilSangue Fdn, Dept Mol Biol, Serol Div, BR-05403000 São Paulo, SP, BrazilUniversidade Federal de São Paulo, BR-04039032 São Paulo, SP, BrazilUniversidade Federal de São Paulo, BR-04039032 São Paulo, SP, BrazilWeb of ScienceFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)PRP-USPFAPESP: 11/50761-2Biomed Central LtdUniversidade de São Paulo (USP)Sangue FdnUniversidade Federal de São Paulo (UNIFESP)Ozahata, Mina CinthoSabino, Ester CerdeiraDiaz, Ricardo Sobhie [UNIFESP]Cesar, Roberto M.Ferreira, Joao Eduardo2016-01-24T14:40:03Z2016-01-24T14:40:03Z2015-02-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion23application/pdfhttp://dx.doi.org/10.1186/s12859-015-0452-0Bmc Bioinformatics. London: Biomed Central Ltd, v. 16, 23 p., 2015.10.1186/s12859-015-0452-0WOS000350060100001.pdf1471-2105http://repositorio.unifesp.br/handle/11600/38751WOS:000350060100001engBmc Bioinformaticsinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-01T06:39:15Zoai:repositorio.unifesp.br/:11600/38751Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-01T06:39:15Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
dc.title.none.fl_str_mv |
Data-intensive analysis of HIV mutations |
title |
Data-intensive analysis of HIV mutations |
spellingShingle |
Data-intensive analysis of HIV mutations Ozahata, Mina Cintho HIV Mutation Cluster |
title_short |
Data-intensive analysis of HIV mutations |
title_full |
Data-intensive analysis of HIV mutations |
title_fullStr |
Data-intensive analysis of HIV mutations |
title_full_unstemmed |
Data-intensive analysis of HIV mutations |
title_sort |
Data-intensive analysis of HIV mutations |
author |
Ozahata, Mina Cintho |
author_facet |
Ozahata, Mina Cintho Sabino, Ester Cerdeira Diaz, Ricardo Sobhie [UNIFESP] Cesar, Roberto M. Ferreira, Joao Eduardo |
author_role |
author |
author2 |
Sabino, Ester Cerdeira Diaz, Ricardo Sobhie [UNIFESP] Cesar, Roberto M. Ferreira, Joao Eduardo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Sangue Fdn Universidade Federal de São Paulo (UNIFESP) |
dc.contributor.author.fl_str_mv |
Ozahata, Mina Cintho Sabino, Ester Cerdeira Diaz, Ricardo Sobhie [UNIFESP] Cesar, Roberto M. Ferreira, Joao Eduardo |
dc.subject.por.fl_str_mv |
HIV Mutation Cluster |
topic |
HIV Mutation Cluster |
description |
Background: in this study, clustering was performed using a bitmap representation of HIV reverse transcriptase and protease sequences, to produce an unsupervised classification of HIV sequences. the classification will aid our understanding of the interactions between mutations and drug resistance. 10,229 HIV genomic sequences from the protease and reverse transcriptase regions of the pol gene and antiretroviral resistant related mutations represented in an 82-dimensional binary vector space were analyzed.Results: A new cluster representation was proposed using an image inspired by microarray data, such that the rows in the image represented the protein sequences from the genotype data and the columns represented presence or absence of mutations in each protein position. the visualization of the clusters showed that some mutations frequently occur together and are probably related to an epistatic phenomenon.Conclusion: We described a methodology based on the application of a pattern recognition algorithm using binary data to suggest clusters of mutations that can easily be discriminated by cluster viewing schemes. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02-05 2016-01-24T14:40:03Z 2016-01-24T14:40:03Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1186/s12859-015-0452-0 Bmc Bioinformatics. London: Biomed Central Ltd, v. 16, 23 p., 2015. 10.1186/s12859-015-0452-0 WOS000350060100001.pdf 1471-2105 http://repositorio.unifesp.br/handle/11600/38751 WOS:000350060100001 |
url |
http://dx.doi.org/10.1186/s12859-015-0452-0 http://repositorio.unifesp.br/handle/11600/38751 |
identifier_str_mv |
Bmc Bioinformatics. London: Biomed Central Ltd, v. 16, 23 p., 2015. 10.1186/s12859-015-0452-0 WOS000350060100001.pdf 1471-2105 WOS:000350060100001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bmc Bioinformatics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
23 application/pdf |
dc.publisher.none.fl_str_mv |
Biomed Central Ltd |
publisher.none.fl_str_mv |
Biomed Central Ltd |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
instname_str |
Universidade Federal de São Paulo (UNIFESP) |
instacron_str |
UNIFESP |
institution |
UNIFESP |
reponame_str |
Repositório Institucional da UNIFESP |
collection |
Repositório Institucional da UNIFESP |
repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
_version_ |
1814268440815337472 |