Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_0fef518605b4620cedf778947bb4f78c
oai_identifier_str oai:bdtd.uftm.edu.br:tede/544
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling Caracterização da atividade cininogenásica no líquido pericárdico humanoLíquido pericárdico.Cininogenase.Cininas.Pericardial fluid.Kininogenase.Kinins.Ciências BiológicasO líquido pericárdico está em contato com o coração e reflete seu status fisiológico. Durante os processos patológicos cardíacos, o nível de fatores bioquímicos no fluido pericárdico é significativamente alterado, sendo considerado um ótimo material para pesquisas cardiovasculares. Atividade de enzimas das classes de serino, aspartil e cisteíno peptidases já foram descritas no fluido pericárdico. Como estas classes enzimáticas têm sido incluídas como cininogenases, e a bradicinina exerce um importante papel de proteção do sistema cardiovascular pela sua potente ação vasodilatadora, a caracterização de atividade cininogenásica no fluido pericárdico é de grande interesse no entendimento dos processos de regulação do tônus vascular neste local. O objetivo deste trabalho foi investigar a capacidade de enzimas presentes no líquido pericárdio gerar cininas. Vinte e três (23) amostras de fluido pericárdico humano, obtidas durante procedimentos cirúrgicos de revascularização coronária, cirurgia de aorta torácica e substituição valvar, foram analisadas quanto às atividades de aspartil, serino e cisteíno proteases. Para determinação das atividades enzimáticas foram utilizados os substratos sintéticos, com apagamento intramolecular de fluorescência, Abz-KPIEFFRLQ-Eddnp (suscetível à hidrólise por aspartil peptidases), Abz-AIKFFRLQ-Eddnp (suscetível à hidrólise por aspartil e cisteíno peptidases), Abz-MISLMKRPQ-Eddnp e Abz-FRSSRQ-Eddnp (sequências N e C terminais em torno da bradicinina), na faixa de pH de 2,0 a 9,0. Inibidores (Pepstatina A, PMSF e E-64) foram utilizados para caracterizar as classes enzimáticas. As hidrólises foram avaliadas através da variação de fluorescência. Os pontos de clivagem nos substratos com sequências do cininogênio foram monitorados através de cromatografia líquida de alta eficiência (CLAE) e da análise de aminoácidos dos fragmentos liberados. Todas as amostras de fluido pericárdico utilizadas neste estudo hidrolisaram os substratos testados. O pH ótimo de hidrólise dos peptídeos pelas enzimas do fluido pericárdico para cada um dos substratos foi 4,0 (Abz-KPIEFFRLQ-Eddnp, Abz-AIKFFRLQ-Eddnp, Abz-MISLMKRPQ-Eddnp e Abz-FRSSRQ-Eddnp), inibida pela Pepstatina A; 6,0 (Abz-AIKFFRLQ-Eddnp) inibida por E-64; e 8,0 (Abz-MISLMKRPQ-Eddnp e Abz-FRSSRQ-Eddnp) inibida por PMSF. Os resultados mostram que o fluido pericárdico humano hidrolisou os substratos relacionados ao cininogênio. Para o substrato Abz-MISLMKRPQ-Eddnp os dados obtidos foram 75±31µM.min-1( média ± DP) em pH ácido, e 334±161 µM.min-1( média ± DP) em pH 8,0. Os inibidores enzimáticos foram úteis para mostrar que aspartil e serino proteases são as classes enzimáticas com potencial atividade cininogenásica no fluido pericárdico. A análise cromatográfica dos peptídeos e de aminoácidos dos fragmentos liberados após as hidrólises permitiu observar que cada um dos substratos foi clivado em uma única ligação. Em pH 4,0 os produtos fluorescentes foram similares aos fragmentos obtidos da hidrólise por uma protease ácida renal que libera MLBK do cininogênio humano, com clivagem das ligações Leu-Met e Arg-Ser nos substratos Abz-MISLMKRPQ-Eddnp e Abz-FRSSRQ-Eddnp, respectivamente. Em pH 8,0 os produtos de hidrólise apresentaram tempos de retençao comparáveis aos obtidos para a calicreína plasmática e a hidrólise ocorreu nas ligações Lys-Arg e Arg-Ser para os mesmos substratos, sugerindo a liberação de bradicinina. Nas condições de ensaio utilizadas não foi possível identificar atividade cininogenásica relacionada a cisteíno peptidases. Nossos resultados mostram que o fluido pericárdico humano contém enzimas com potencial atividade cininogenásica, corroborando com outros estudos que sugerem que o conteúdo de peptídeos do fluido pericárdico não deve ser consequência apenas do fluxo do fluido intersticial miocárdico. Ainda não podemos afirmar se este fluido contém substratos para a atividade cininogenásica e se as cininas liberadas localmente tem significância fisiológica.The pericardial fluid is in contact with the heart and reflects its physiological status. During cardiac disease processes, the level of biochemical factors in the pericardial fluid is significantly changed, being considered a great material for cardiovascular research. Enzyme activity class of serine, aspartyl and cysteine peptidases have been described in the pericardial fluid. As these enzyme classes have been included as kininogenases, and the bradykinin plays an important role in the cardiovascular system protection, for its potent vasodilator action, the characterization of kininogenase activity in the pericardial fluid is of great interest in understanding the regulatory processes of vascular tone at this location. The aim of this study was to investigate the ability of enzymes present in the pericardial fluid generate kinins. Twenty-three (23) human pericardial fluid samples obtained during surgical procedures for coronary revascularization, thoracic aortic surgery and valve replacement were analyzed for aspartyl, serine and cysteine ​​proteases activities. To determine the enzymatic activity were used Fluorescence Resonance Energy Transfer substrates, Abz-KPIEFFRL-EDDnp (susceptible to hydrolysis by aspartyl peptidases), Abz-AIKFFRLQ-EDDnp (susceptible to hydrolysis by aspartyl and cysteine ​​peptidases), Abz-MISLMKRPQ-EDDnp and Abz-FRSSRQ-EDDnp (N- and C-terminal sequences around the bradykinin) in the pH range 2.0 to 9.0. Inhibitors (Pepstatin A, and E-64 PMSF) were used to characterize the enzymatic classes. The hydrolysis were assessed by fluorescence variation. The cleavage sites in substrates with kininogen sequences were monitored by high-performance liquid chromatography (HPLC) and amino acid analysis of the released fragments. All the pericardial fluid samples used in this study hydrolyzed substrates tested. The optimum pH for hydrolysis of peptides by enzymes in the pericardial fluid to each of the substrates was 4.0 (Abz-KPIEFFRL-EDDnp, Abz-AIKFFRLQ-EDDnp, Abz-MISLMKRPQ-EDDnp and Abz-FRSSRQ-EDDnp) inhibited by Pepstatin A; 6.0 (Abz-AIKFFRLQ-EDDnp) inhibited by E-64; and 8.0 (Abz-MISLMKRPQ-EDDnp and Abz-FRSSRQ-EDDnp) inhibited by PMSF. The results show that the human pericardial fluid hydrolyzed substrates related kininogen. For Abz-MISLMKRPQ-EDDnp the data obtained were 75 ± 31μM.min-1 (mean ± SD) at acid pH, and 334 ± 161 μM.min-1 (mean ± SD) at pH 8.0. Enzyme inhibitors are useful for showing that aspartyl and serine proteases are enzyme classes with potential kininogenase activity in the pericardial fluid. Chromatographic analysis of peptides and amino acids of fragments released after the hydrolysis allowed observing that each of the substrates was cleaved into a single connection. At pH 4.0 fluorescent products were similar to fragments obtained from hydrolysis by renal acid protease that releases MLBK the human kininogen with cleavage of Leu-Met and Arg-Ser bonds in substrates Abz-MISLMKRPQ-EDDnp and Abz-FRSSRQ-EDDnp, respectively. At pH 8.0 the hydrolysis products had retention times comparable to those obtained for the plasma kallikrein and hydrolysis has occurred in the Lys-Arg and Arg-Ser bonds for the same substrates, suggesting the release of bradykinin. At these assay conditions it was not possible to identify kininogenase activity related to cysteine ​​peptidases. Our results show that the human pericardial fluid contains enzymes with the potential kininogenase activity, which corroborates with studies suggesting that the peptide content of pericardial fluid must not only be a consequence of myocardial interstitial fluid. If pericardial fluid contains substrates to kininogenase activity, and kinins released in this locally has physiological significance, remains to be determined.Fundação de Amparo à Pesquisa do Estado de Minas GeraisFundação de Ensino e Pesquisa de UberabaUniversidade Federal de São PauloUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Curso de MedicinaBrasilUFTMPrograma de Pós-Graduação em Ciências FisiológicasGOMES, Roseli Aparecida da Silva44940874672http://lattes.cnpq.br/6327703613785635CIELLO, Giani del2018-04-25T18:06:11Z2015-09-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfCIELLO, Giani del. Caracterização da atividade cininogenásica no líquido pericárdico humano. 2015. 47f. Dissertação (Programa de Pós-Graduação em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2015.http://bdtd.uftm.edu.br/handle/tede/544porAraki H, Takenaka F. An increase of cathepsin D activity in cardiac lymph and pericardial fluid induced by experimental myocardial ischemia in the dog. Life Sciences, Japan, v. 17, p.613-618, 1975. Bechtloff R, Goette A, Bukowska A, Kahne T, Peters B, Huth C, Wolke C, Lendeckel U. Gender and age-dependent differences in the bradykinin-degradation within the pericardial fluid of patients with coronary artery disease. International Journal of Cardiology, Alemanha, v.146, p.164-170, 2011. Bockmann S, Paegelow I. Kinins and kinin receptors: importance for the activation of leukocytes. J Leukoc Biol, Alemanha, v.68, p.587–592, 2000. Burbach JPH, Arie P, Lebouille JLM, Verhoef J, Witter A. Sensitive and rapid amino acid analysis of peptide hydrolysates by high performance liquid chromatography of o-phtalaldialdehyde derivatives. Journal of Chromatography, v.237, p.339-343, 1982. Chao J, Chao L. Kallikrein-kinin in stroke, cardiovascular and renal disease. Exp Physiol, Charleston, SC, v.90, p.291–298, 2005. Chao J, Li H J, Yao Y Y, Shen B, Gao L, Bledsoe G et al. Kinin infusion prevents renal inflammation, apoptosis, and fibrosis via inhibition of oxidative stress and mitogen-activated protein kinase activity. Hypertension, Dallas, TX, v.49, p.490-497, 2007. Chagas JR, Prado ES, Juliano L. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Analytical Biochemistry 1991;192, 419-425. Cheng X W, Shi GP, Kuzuya M, Sasaki T, Okumura K, Murohara T. Role for Cysteine Protease Cathepsins in Heart Disease: Focus on Biology and Mechanisms With Clinical Implication. Circulation,Nagoya, Japan, v.125, p. 1551-1562, 2012. Coats AJS. Pericardial Fluid – dispensable or indispensable fluid and an example of patentable bio-diversity. International journal of cardiology, [S.I.], v.77, p.109-111, 2001. Corda S, Mebazaa A, Gandolfini M, Fitting C, Marrotte F, Peynet J, Charlemagne D, Cavaillon J, Payen D, Rappaport L, Samuel J. Trophic Effect of Human Pericardial Fluid on Adult Cardiac Myocytes. Circulation Research, France, v.81, p.679-687, 1997. Cruden N L, Newby D E. Clots, kinins and coronaries. Atherosclerosis, Edinburgh, UK, v.183, p. 189–198, 2005. Czum JM, Silas AM, Althoen MC. Evaluation of the Pericardium with CT and MR. ISRN Cardiology, USA, v.2014, 2014. Drinker CK, Field ME. Absorption from the pericaldial cavity. The J of Exp Medicine, v.53, 1931. Fernández AL, García-Bengochea JB, Alvarez J, Juanatey JRG. Biochemical markers of myocardial injury in the pericardial fluid of patients undergoing heart surgery. Interactive CardioVascular and Thoracic Surgery, Santiago de Compostela, Spain, v.7, p.373-377, 2008. Gardner E, Gray DJ, Rahilly R. Anatomia. 4. ed. Guanabara Koogan, 1988. 816p. Gibson AT, Segal MB. A Study of the composition of pericardial fluid, with special reference to the probable mechanism of fluid formation. J Physiol, London, v.277, p.367-377, 1978. Gomes R A S, Juliano S, Chagas JR, Hial V. Characterization of kininogenase activity of na acidic proteinase isolated from human Kidney. Can. J. Physiol. Pharmacol., Uberaba, v.75, p.757-761, 1997. Gomes RAS, Juliano S, Chagas JR, Hial V. Met-Lys-Bradykinin-Ser, the kinin released from human kininogen by human pepsin. Immuopharmacology, Uberaba, v.32, p.76-79, 1996 Gomes R A S, Teodoro LGVL, Lopes ICR, Bersanetti PA, Carmona AK, Hial V. Enzima conversora de angiotensina no líquido pericárdico: estudo comparativo com a atividade sérica. Arq. Bras. Cardiol, Uberaba, v.91, p.172-178, 2008. Gryglewski RJ. Prostacyclin among prostanoids. Pharmacol Rep, Kraków, Poland, v.60, p.3-11, 2008. Heitsch H. The therapeutic potential of bradykinin B2 receptor agonists in the treatment of cardiovascular disease. Expert Opin Investig Drugs, Frankfurt, Germany, v.12, p. 759–770, 2003. Hial V, Gimbrone JR MA, PEYTON MP, WILCOS GM, PISANO JJ. Angiotensin metabolism by cultured human vascular endothelial and smooth muscle cells. Microvasculature Research, v.17, p.314-329, 1979. Holt JP. The normal pericardium. Am J Cardiol, v.26, p.455-465, 1970. Imazio M. Pericarditis: Pathophysiology, Diagnosis, and Management. Curr Infect Dis Rep, Torino, Italy, v.13, p.308-316, 2011. Ishihara T, Ferrans VJ, Jones M, Boyce SW, Kawanami O, Roberts WC. Histologic and ultrastructural features of normal human parietal pericardium. Am J Cardiol, v.46, p.744-753, 1980. Ishihara T, Ferrans VJ, Jones M, Boyce SW, Roberts WC. Structure of bovine parietal pericardium and of unimplanted Ionescu-Shiley pericardial valvular bioprostheses. J Thorac Cardiovasc Surg, v.81, n. 5, p.747-57, 1981. Ji H, Nie H. Electrolyte and Fluid Transport in Mesothelial Cells. J Epithel Biol Pharmacol, v.1, p. 1–7, 2008. Kaplan AP, Joseph K, Shibayama Y, Nakazawa Y, Ghebrehiwet B, Reddigari S, Silverberg M. Bradykinin formation. Plasma and tissue pathways and cellular interactions. Clin Rev Allergy Immunol, v.16,p.403-429, 1998. Kaplan AP, Joseph K, Silverberg M. Pathways for bradykinin formation and inflammatory disease. J Allergy Clin Immunol, USA, v.2, p.195-209, 2002. Kuhr F, Lowry J, Zhang Y, Brovkovych V, Skidgel R A. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors. Neuropeptides, Chicago, USA, v.44, p. 145–154, 2010. Limana F, Bertolami C, Mangoni A, DI Carlo A, Avitabile D, Mocini D, Ianelli P, DE Mori R, Marchetti C, Pozzoli O, Gentili C, Zacheo A, Germani A, Capogrossi MC. Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: Role of the pericardial fluid. J of Mol and Cellular Cardiology, v.48, p.609–618, 2010. Limana F, Capogrossi MC, Germani A. The epicardium in cardiac repair: From the stem cell view. Pharm & Therap, v.129, p.82–96, 2011.   Linz W, Martorana PA, Wiemer G, Wirth K, Schölkens BA. Role of kinins in myocardial ischemia. EXS., v.76, p.231-241, 1996. Linz W, Wohlfart P, Scholkens BA, Malinski T, Wiemer G. Interactions among ACE, kinins and NO. Cardiovasc Res, Frankfurt/Main, Germany, v.43, p.549–561, 1999. Madeddu P, Emanueli C, El-Dahr S. Mechanisms of disease: the tissue kallikrein-kinin system in hypertension and vascular remodeling. Nat Clin Pract Nephrol, Bristol, UK, v.3, p.208–221, 2007. Marcondes S, Antunes E. The Plasma and Tissue Kininogen-kallikrein-kinin System: Role in the Cardiovascular System. Current Medicinal Chemistry - Cardiovascular & Hematological Agents, Campinas, v.3, p.33-44, 2005. Margaryan NV, Kirschmann DA, Lipavsky A, Bailey CM, Hendrix MJ, Khalkhali-Ellis Z. New insights into cathepsin D in mammary tissue development and remodeling. Cancer Biol Ther. 2010 Sep 1;10(5):457-66. Epub 2010 Oct 1. Chicago, Illinois USA. Maurer FW, Warren MF, Drinker CK. The composition of mamalian pericardial and peritoneal fluids. Studies of their protein and chloride contents, and the passage of foreign substances from the blood stream into these fluids. Am J Physiol, v.129, p.635-644, 1940. Mebazaa A, Wetzel RC, Dodd-o JM, Redmond EM, Shah AM, Maeda K, Maistre G, Lakatta EG, Robotham JL. Potential paracrine role of the pericardium in the regulation of cardiac function. Cardiovascular Research, USA, v.40, p.332-342, 1998. Moshi MJ, Zeitlin IJ, Parratt JR. An acidic kininogenase in rat ventricular myocardium. J Cardiovasc Risk, v.2, p.331-337, 1995. Moshi MJ, Zeitlin IJ, Wainwright CL, Parratt JR. Acid optimum kininogenases in canine myocardium and aorta. Cardiovasc Res., Glasgow, United Kingdom, v.26, p.367-370, 1992. Oyama J, Shimokawa H, Morita S, Yassui H, Takeshita A. Elevated interleukin-1β in pericardial fluid of patients with ischemic heart disease. Coronary artery disease, Japan, v.12, p.567-571, 2001. Oza NB, Schwartz JH, Goud HD, Levinsky NG. Rat Aortic Smooth Muscle Cells in Culture Express Kallikrein, Kininogen, and Bradykininase Activity. J. Clin. Invest., Boston, Massachusetts, v.85, p.597-600, 1990. Pathak M, Wong SS, Dreveny I, Emsley J. Structure of plasma and tissue kallikreins. Thromb Haemost, Nottingham, v.110, p.423–433, 2013. Puzer L, Vercesi J, Alves MFM, Barros NMT, Araujo MS, Juliano M A, Reis ML, Juliano L, Carmona AK. A possible alternative mechanism of kinin generation in vivo by cathepsin L. Biol. Chem., São Paulo, v.386, p.699–704, 2005. Qin Y, Shi GP. Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. Pharmacol Ther, Beijing, China, v.131, p.338–350, 2011. Regoli D, Plante G E, Gobeil jr.F. Impact of kinins in the treatment of cardiovascular diseases. Pharmacology & Therapeutics, Ferrara, Italy, v.135, p.94–111, 2012. Regoli D. Pharmacology of nitric oxide: molecular mechanisms and therapeutic strategies. Curr Pharm Des, Québec, Canada, v.10, p.1667–1676, 2004. Rhaleb N E, Yang XP, Carretero OA. The Kallikrein-Kinin System as a Regulator of Cardiovascular and Renal Function. Compr Physiol, Detroit, Michigan, USA, v.1, p.971–993, 2011. Riemann D, Wollert HG, Menschikowski J, Mittenzwei S, Langner J. Immunophenotype of Lymphocytes in Pericardial Fluid from Patients with Different Forms of Heart Disease. Int Arch Allergy Immunol, Halle, FRG, v.194, p.48-56, 1994. Santos D R, Calixto JB, Souza G E. Effect of a kinin B2 receptor antagonist on LPS- and cytokine-induced neutrophil migration in rats. Br J Pharmacol, Ribeirão Preto, SP, v.139, p. 271–278, 2003. Schmaier AH, McCrae K R. The plasma kalikrein-kinin system: its evolution from contact activation. J. Thromb Haemost, Cleveland, USA, v.5, p.2323-2329, 2007. Sharma J N. Cardiovascular activities of the bradykinin system. The Scientific World Journal, Kuwait, v.8, p. 384–393, 2008. Shikama N, Terano T, Hirai A. A case of rheumatoid pericarditis with high concentrations of interleukin-6 in pericardial fluid. Heart, Japan, v. 83, p.711–712, 2000. Tambara K, Fujita M, Nagaya N, Miyamoto S, Iwakura A, Doi K, Sakaguchi G, Nishimura K, Kangawa K, Komeda M. Increased pericardial fluid concentrations of the mature form of adrenomedullin in patients with cardiac remodelling. Heart, Japan, v. 87, p.242–246, 2002. Tanaka T, Hasegawak K, Fujita M, Tamaki S, Yamazato A, Kihara Y, Nohara R, Sasayama S. Marked Elevation of Brain Natriuretic Peptide Levels in Pericardial Fluid Is Closely Associated With Left Ventricular Dysfunction. J Am Coll Cardiol, Japan, v.31, p.399–403, 1998. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica et Biophysica Acta, Ljubljana, Slovenia, v.1824, p.68-88, 2012. Umezawa H, Aoyagi T, Morishima H, Matsuzaki M, Hamada M, Takeuchi T. Pepstatin, a new pepsin inhibitor produced by actinomycetes. J. Antibiotics, v.23, p. 259-262, 1970 Vanhoutte P M. Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J, Hong Kong, China, v.73, p.595–601, 2009. Wang Z, Li M, Li J. Recent Advances in the Research of Lymphatic Stomata. The Anatomical Record, v.293, p.754–761, 2010. Watanabe M, Kawaguchi S, Nakahara H, Hachimaru T. The Roles of Natriuretic Peptides in Pericardial Fluid in Patients with Heart Failure. Clin. Cardiol, Japan, v.32, p.159–163, 2009. Xiang F, Guo X, Chen W, Wang J, Zhou T, Huang F, Cao C, Chen X. Proteomics analysis of human pericardial fluid. Proteomics Journal, Nanjing, China, v.13, p.2692-2695, 2013. Zeitlin IJ, Fagbemi SO, Parratt JR. Enzymes in normally perfused and ischaemic dog hearts which release a substance with kinin like activity. Cardiovasc Res, v.23, p.91-97, 1989.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-06-26T19:15:57Zoai:bdtd.uftm.edu.br:tede/544Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:58:52.862437Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186156190892032