Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_135679f1883b1f8ef9533698095f18e3
oai_identifier_str oai:bdtd.uftm.edu.br:tede/849
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling Avaliação de um novo protocolo de imunoterapia com células dendríticas no tratamento de tumores experimentais de mama induzido com células 4T1Tumor de mama.Imunoterapia.Células dendríticas.Breast cancer.Immunotherapy.Dendritic cell.MedicinaIntrodução: O tumor é a segunda causa de óbitos em todo o mundo, cerca de 9,6 milhões em 2018. A imunoterapia com células dendríticas no tratamento do tumor objetiva ativar a resposta imune para que sejam capazes de eliminar células neoplásicas. O presente estudo teve por objetivo avaliar o perfil de resposta imune induzido por células dendríticas submetidas à diferentes protocolos de maturação no baço e microambiente tumoral de camundongos com tumor de mama experimental. Materiais e métodos: Para este estudo, células pluripotentes da medula óssea de camundongos Balb/c fêmeas foram diferenciadas por meio do estímulo com fator estimulador de colônias de granulócitos e macrófagos (GM-CSF) e interleucina-4 (IL-4). Posteriormente, estas células foram submetidas a dois diferentes protocolos de maturação. No protocolo DCs, as células dendríticas foram estimuladas com TNF-α e lisado tumoral. No protocolo LPSDCs, as células dendríticas foram estimuladas com TNF-α, lipopolissacarídeo e lisado tumoral. As células DCs e LPSDCs foram utilizadas para imunoterapia de camundongos Balb/c fêmeas com tumor de mama experimental induzido com células de linhagem 4T1 (n= 10 animais por grupo). Após o período experimental, células esplênicas e intratumorais foram coletadas e avaliadas por meio da citometria de fluxo. Resultados: Em nosso estudo observamos as vacinas DCs e LPSDCs reduzem o volume tumoral tumoral (p<0,0001) quando comparados aos camundongos com tumor de mama não tratados. Além disso, observamos que a vacina LPSDCs induz um aumento do percentual de células T auxiliares CD3+ CD4+ esplênicas e intratumorais quando comparada aos grupos WT (p<0,001) e Tumor (p<0,0001). Ambas as vacinas aumentaram a produção de IFN-γ no microambiente tumoral (p<0,0001) quando comparados ao grupo Tumor. O tratamento de camundongos com tumor de mama com a vacina LPSDCs induziu uma redução significativa do percentual de células T reguladoras e macrófagos no microambiente tumoral quando comparados ao grupo Tumor (p<0,0001) e uma maior porcentagem de células NK CD335+ quando comparado aos grupos Tumor (p=0,0201) e DCs (p=0,0001). Conclusão: este estudo experimental demonstra que respostas imunes in vivo são induzidas por meio da imunoterapia com células dendríticas, sendo que o estímulo adicional com lipopolissacarídeo induz o aumento da infiltração de células imunes com atividade antitumoral e redução de células imunossupressoras no microambiente tumoral.Introduction: Cancer is the second cause of death worldwide, about 9.6 million in 2018. Immunotherapy with dendritic cells for cancer patients aims to activate the immune response to be eliminate neoplastic cells. Our study aimed to evaluate the immune response profile induced by dendritic cells submitted to different maturation protocols in the spleen and tumor microenvironment of mice with experimental breast cancer. Materials and methods: For this study, bone marrow pluripotent cells of female Balb/c mice were differentiated by stimuly with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). Subsequently, these cells were submitted to two different maturation protocols. In the DCs protocol, dendritic cells were stimulated with TNF-α and tumor lysate. In the LPSDCs protocol, dendritic cells were stimulated with TNF-α, lipopolysaccharide and tumor lysate. DCs and LPSDCs cells were used for immunotherapy of female Balb/c mice with experimental breast cancer induced with 4T1 lineage cells (n= 10 animals each group). After the experimental period, splenic and intratumoral cells were collected and evaluated by flow cytometry. Results: In our study we observed that DCs and LPSDCs reduce the tumor growth rate (p<0.0001) when compared to the untreated breast cancer mice. In addition, we observed that the LPSDCs vaccine induces an increase in the percentage of splenic and intratumoral CD3+ CD4+ T helper cells when compared to the WT (p<0.001) and Tumor (p<0.0001) groups. Both vaccines increased the production of IFN-γ in the tumor microenvironment (p <0.0001) when compared to the Tumor group. The treatment with the LPSDCs vaccine induced a significant reduction in the percentage of regulatory T cells and macrophages in the tumor microenvironment when compared to the Tumor group (p <0.0001) and a higher percentage of CD335+ NK cells when compared to Tumor (p=0.0201) and DCs (p=0.0001) groups. Conclusion: This experimental study demonstrates that in vivo immune responses are induced by immunotherapy with dendritic cells, and additional stimulation with lipopolysaccharide induces increased infiltration of immune cells with antitumor activity and reduction of immunosuppressive cells in the tumor microenvironment.Fundação de Amparo à Pesquisa do Estado de Minas GeraisUniversidade Federal do Triângulo MineiroConselho Nacional de Desenvolvimento Científico e TecnológicoUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da SaúdeBrasilUFTMPrograma de Pós-Graduação em Ciências da SaúdeMICHELIN, Márcia Antoniazi11828808865http://lattes.cnpq.br/2599409028588669MURTA, Eddie Fernando Candido47668032649http://lattes.cnpq.br/5724192420139830LOPES, Angela Maria Moed2019-09-02T18:52:47Z2019-07-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfLOPES, Angela Maria Moed. Avaliação de um novo protocolo de imunoterapia com células dendríticas no tratamento de tumores experimentais de mama induzido com células 4T1. 2019. 62f . Dissertação (Mestrado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2019 .http://bdtd.uftm.edu.br/handle/tede/849porANDERSON, D. M. et al. A homologue of the TNF receptor and its ligand enhance Tcell growth and dendritic-cell function. Nature, v. 390, n. 6656, p. 175–179, 1997. ANGUILLE, S. et al. Clinical use of dendritic cells for cancer therapy. The Lancet Oncology, v. 15, n. 7, p. 257–267, 2014. AQBI, H. F. et al. IFN-γ orchestrates tumor elimination, tumor dormancy, tumor escape, and progression. Journal of Leukocyte Biology, v. 103, n. 6, p. 1219–1223, 2018. ARAKI, K.; YOUNGBLOOD, B.; AHMED, R. The role of mTOR in memory CD8+ T-cell differentiation. Immunological Reviews, v. 235, p. 234–243, 2010. ATHIE-MORALES, V. et al. Sustained IL-12 Signaling Is Required for Th1 Development. The Journal of Immunology, v. 172, n. 1, p. 61–69, 2004a. BANCHEREAU, J. et al. Immunobiology of Dendritic Cells. Annual review of immunology, v. 18, p. 767–811, 2000. BANCHEREAU, J.; STEINMAN, R. M. Dendritic cells and the control of immunity. Nature, v. 392, p. 245–252, 1998. BOL, K. F. et al. Dendritic cell-based immunotherapy: State of the art and beyond. Clinical Cancer Research, v. 22, n. 8, p. 1897–1906, 2016. BOUSSO, P.; ROBEY, E. Dynamics of CD8 + T cell priming by dendritic cells in intact lymph nodes. Nature Immunology, v. 4, n. 6, p. 579–585, 2003. BRADLEY, L. M. Migration and T-lymphocyte effector function. Current Opinion in Immunology, v. 15, n. 3, p. 343–348, jun. 2003. BURNET, S. M. Cancer - A Biological Approach. British Medical Journal, v. 1, p. 841–47, 1957. CASTIELLO, L. et al. Monocyte-derived DC maturation strategies and related pathways: a transcriptional view. Cancer immunology immunotherapy, v. 60, n. 4, p. 457– 466, 2011. CEKAY, M. J. et al. Smac mimetics and type II interferon synergistically induce necroptosis in various cancer cell lines. Cancer Letters, v. 410, p. 228–237, 2017. CHEN, L. et al. Costimulation of Antitumor Immunity by the B7 Counterreceptor for the T Lymphocyte Molecules CD28 and CTLA-4. Cell, v. 71, p. 1093–1102, 1992. CHIANG, C. L.-L. et al. A Dendritic Cell Vaccine Pulsed with Autologous Hypochlorous Acid-Oxidized Ovarian Cancer Lysate Primes Effective Broad Antitumor Immunity: From Bench to Bedside. Clinical Cancer Research, v. 19, n. 17, p. 4801–4815, 2013. COQUERELLE, C.; MOSER, M. DC subsets in positive and negative regulation of immunity. Immunological reviews, v. 234, n. 1, p. 317–334, 2010. CORTHAY, A. et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity, v. 22, n. 3, p. 371–83, mar. 2005. DE VRIES, I. J. M. et al. Maturation of Dendritic Cells Is a Prerequisite for Inducing Immune Responses in Advanced Melanoma Patients. Clinical Cancer Research, v. 9, n. 14, p. 5091–5100, 2003. DHODAPKAR, M. V. et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. Journal of Clinical Investigation, v. 104, n. 2, p. 173–180, 1999. DRAUBE, A. et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: A systematic review and meta-analysis. PLoS ONE, v. 6, n. 4, 2011. DURAI, V.; MURPHY, K. M. Functions of Murine Dendritic Cells. Immunity, v. 45, n. 4, p. 719–736, 2016. EFRON, P. A. et al. Differential maturation of murine bone-marrow derived dendritic cells with lipopolysaccharide and tumor necrosis factor-α. Journal of Endotoxin Research, v. 11, n. 3, p. 145–160, 2005. EISENBARTH, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nature Reviews Immunology, v. 19, n. 2, p. 89–103, 2019. ELLYARD, J. I.; SIMSON, L.; PARISH, C. R. Th2-mediated anti-tumour immunity: Friend or foe? Tissue Antigens, v. 70, n. 1, p. 1–11, 2007. FERRANTINI, M.; CAPONE, I.; BELARDELLI, F. Dendritic cells and cytokines in immune rejection of cancer. Cytokine & growth factor reviews, v. 19, n. 1, p. 93–107, fev. 2008. FRÜH, K.; YANG, Y. Antigen presentation by MHC class I and its regulation by interferon γ. Current Opinion in Immunology, v. 11, n. 1, p. 76–81, 1999. GARDNER, A.; RUFFELL, B. Dendritic Cells and Cancer Immunity. Trends in Immunology, v. 37, n. 12, p. 855–865, 2016. GELLER, M. A.; MILLER, J. S. Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy, v. 3, n. 12, p. 1445–1459, 2011. GERBER, S. A. et al. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. American Journal of Pathology, v. 182, n. 6, p. 2345–2354, 2013. GHIRINGHELLI, F. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor- -dependent manner. Journal of Experimental Medicine, v. 202, n. 8, p. 1075–1085, 2005. GOTOH, K. et al. Mitochondrial p32/C1qbp Is a Critical Regulator of Dendritic Cell Metabolism and Maturation. Cell Reports, v. 25, n. 7, p. 1800–1815.e4, 2018. GREWAL, I. S.; FLAVELL, R. A. A central role of CD40 ligand in the regulation of CD4+ T-cell responses. Immunology Today, v. 17, n. 9, p. 410–414, 1996. GUERMONPREZ, P. et al. ER – phagosome fusion defines an MHC class I crosspresentation compartment in dendritic cells. Nature, v. 425, p. 397–402, 2003. HARDING, F. A et al. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature, v. 356, p. 607–609, 1992. HART, D. N. J. Dendritic Cells: Unique Leukocyte Populations Which Control the Primary Immune Response. Blood, v. 90, n. 9, p. 3245–3288, 1997. HEATH, W. R. et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunological Reviews, v. 199, p. 9–26, 2004. HUBER, A. et al. Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets? Frontiers in immunology, v. 9, n. December, p. 2804, 2018. INCA, MINISTÉRIO DA SAÚDE; INSTITUTO NACIONAL DE TUMOR JOSÉ ALENCAR GOMES DA SILVA. Estimativa 2018-Incidência de tumor no Brasil. [s.l: s.n.]. JANSSEN, E. M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature, v. 421, n. 6925, p. 852–856, 2003. JEONG, S. K. et al. Interferon gamma induced by resveratrol analog, HS-1793, reverses the properties of tumor associated macrophages. International Immunopharmacology, v. 22, n. 2, p. 303–310, 2014. JETTEN, A. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nuclear Receptor Signaling, v. 7, p. 1–32, 2009. JIN, W.; DONG, C. IL-17 cytokines in immunity and inflammation. Emerging Microbes and Infections, v. 2, p. 1–5, 2013. KELLEHER, P.; KNIGHT, S. C. IL-12 increases CD80 expression and the stimulatory capacity of bone marrow-derived dendritic cells. International Immunology, v. 10, n. 6, p. 749–755, 1998. KIRKWOOD, J. M. et al. Immunotherapy of Cancer in 2012. CA Cancer J Clin, v. 62, n. 5, p. 309–335, 2012. KNUTSON, K. L.; DISIS, M. L. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother, v. 54, p. 721--728, 2005. KOLANOWSKI, S. T. H. M. et al. Comparison of media and serum supplementation for generation of monophosphoryl lipid A/interferon-γ–matured type I dendritic cells for immunotherapy. Cytotherapy, v. 16, n. 6, p. 826–834, 2014. KURSUNEL, M. A.; ESENDAGLI, G. The untold story of IFN-γ in cancer biology. Cytokine and Growth Factor Reviews, v. 31, p. 73–81, 2016. KUSHWAH, R.; HU, J. Complexity of dendritic cell subsets and their function in the host immune system. Immunology, v. 133, n. 4, p. 409–419, 2011. LANGEVELD, M.; GAMADIA, L. E.; TEN BERGE, I. J. M. T-lymphocyte subset distribution in human spleen. European Journal of Clinical Investigation, v. 36, n. 4, p. 250–256, 2006. LEE, J.-J. et al. Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. Journal of Leukocyte Biology, v. 84, n. 1, p. 319–325, 2008. LEHRNBECHER, T. et al. Changes in host defence induced by malignancies and antineoplastic treatment : implication for immuno- therapeutic strategies. Lancet Oncol, v. 9, p. 269–278, 2008. LEÓN, B.; LÓPEZ-BRAVO, M.; ARDAVÍN, C. Monocyte-derived dendritic cells. Seminars in Immunology, v. 17, n. 4, p. 313–318, 2005. LIU, Y. J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell, v. 106, n. 3, p. 259–262, 2001. LOPES, A. M. M.; MICHELIN, M. A.; MURTA, E. F. C. Monocyte-derived dendritic cells from patients with cervical intraepithelial lesions. Oncology Letters, v. 13, n. 3, p. 1456–1462, 2017. MA, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity, v. 38, n. 4, p. 729–41, 18 abr. 2013. MAHER, J.; DAVIES, E. T. Targeting cytotoxic T lymphocytes for cancer immunotherapy. British Journal of Cancer, v. 91, n. 5, p. 817–821, 2004. MAILLIARD, R. B. et al. α-Type-1 Polarized Dendritic Cells, A Novel Immunization Tool with Optimized CTL-inducing Activity. Cancer research, v. 64, p. 5934–5937, 2004. MARTÍNEZ-LOSTAO, L.; ANEL, A.; PARDO, J. How Do Cytotoxic Lymphocytes Kill Cancer Cells? Clinical Cancer Research, v. 21, n. 22, p. 5047–5056, 2015. MATIAS, B. F. et al. Influence of immunotherapy with autologous dendritic cells on innate and adaptive immune response in cancer. Clinical Medicine Insights: Oncology, v. 7, p. 165–172, 2013. MILDNER, A.; JUNG, S. Development and function of dendritic cell subsets. Immunity, v. 40, n. 5, p. 642–656, 2014. MITCHELL, D.; CHINTALA, S.; DEY, M. Plasmacytoid dendritic cell in immunity and cancer. Journal of Neuroimmunology, v. 322, n. May, p. 63–73, 2018. MOSSER, D. M.; EDWARDS, J. P. NIH Public Access. Genetics, v. 8, n. 12, p. 958– 969, 2008. MOWEN, K. A.; GLIMCHER, L. H. Signaling pathways in Th2 development. Immunological Reviews, v. 202, p. 203–222, 2004. NESTLE, F. O.; FARKAS, A.; CONRAD, C. Dendritic-cell-based therapeutic vaccination against cancer. Current Opinion in Immunology, v. 17, n. 2, p. 163–169, 2005. NI, L.; LU, J. Interferon gamma in cancer immunotherapy. Cancer Medicine, v. 7, n. 9, p. 4509–4516, 2018. OISETH, S. J.; AZIZ, M. S. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. Journal of Cancer Metastasis and Treatment, v. 3, n. 10, p. 250, 2017. OKADA, H. et al. Induction of CD8 + T-Cell Responses Against Novel Glioma– Associated Antigen Peptides and Clinical Activity by Vaccinations With α-Type 1 Polarized Dendritic Cells and Polyinosinic-Polycytidylic Acid Stabilized by Lysine and Carboxymethylcellulose in Patie. Journal of Clinical Oncology, v. 29, n. 3, p. 330–336, 2011. OVERACRE-DELGOFFE, A. E. et al. Interferon-γ Drives T reg Fragility to Promote Anti-tumor Immunity. Cell, v. 169, n. 6, p. 1130–1141, 2017. PALUCKA, A. K. et al. Taming cancer by inducing immunity via dendritic cells. Immunological Reviews, v. 220, n. 1, p. 129–150, 2007. PALUCKA, K. et al. Dendritic Cells: Are They Clinically Relevant? The Cancer Journal, v. 16, n. 4, p. 318–324, 2010. PALUCKA, K.; BANCHEREAU, J. Cancer immunotherapy via dendritic cells. Nature reviews. Cancer, v. 12, n. 4, p. 265–77, abr. 2012. PALUCKA, K.; BANCHEREAU, J. Dendritic cell-based cancer therapeutic vaccines Karolina. Immunity, v. 39, n. 1, p. 38–48, 2013. PARDOLL, D. M.; TOPALIANT, S. L. The role of CD4 + T cell responses in antitumor immunity. Courrent Opinion in Immunology, v. 10, p. 588–594, 1998. PERUSSIA, B. The cytokine profile of resting and activated NK cells. Methods: A Companion to Methods in Enzymology, v. 9, n. 2, p. 370–378, 1996. PITTET, J. et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF- ␤ signals in vivo. v. 102, n. 2, 2005. PULASKI, B. A; OSTRAND-ROSENBERG, S. Mouse 4T1 breast tumor model. Current protocols in immunology / edited by John E. Coligan ... [et al.], v. Chapter 20, p. Unit 20.2, 2001. PUNT, J.; OWEN, J.; CALIGIURI, M. A. The biology of human natural killer-cell subsets. Trends in Immunology, v. 22, n. 11, p. 633–640, 2001. QU, C. et al. Monocyte-derived dendritic cells: Targets as potent antigen-presenting cells for the design of vaccines against infectious diseases. International Journal of Infectious Diseases, v. 19, n. 1, p. 1–5, 2014. RICCI, S. B.; CERCHIARI, U. Spontaneous regression of malignant tumors: Importance of the immune system and other factors (Review). Oncology Letters, v. 1, n. 6, p. 941–945, 2010. RODRIGUES, C. M. et al. The role of T lymphocytes in cancer patients undergoing immunotherapy with autologous dendritic cells. Clinical Medicine Insights. Oncology, v. 5, p. 107–115, 2011. RUFFELL, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer cell, v. 26, n. 5, p. 623–637, 2014. SABADO, R. L.; BHARDWAJ, N. Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy, v. 2, n. 1, p. 37–56, 2010. SAHA, P.; GEISSMANN, F. Toward a functional characterization of blood monocytes. Immunology and Cell Biology, v. 89, n. 1, p. 2–4, 2011. SAKAGUCHI, S. Naturally arising CD4+ regulatory t cells for immunologic selftolerance and negative control of immune responses. Annual review of immunology, v. 22, p. 531–562, 2004. SALLUSTO, F.; LANZAVECCHIA, A. The instructive role of dendritic cells on Tcell responses. Arthritis Res, v. 4, n. Suppl 3, p. S127–S132, 2002. SCHLITZER, A. et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nature Immunology, n. June, p. 1–13, 2015. SCHNARE, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunology, v. 2, n. 10, p. 947–950, 2001. SCHRAML, B. U.; REIS E SOUSA, C. Defining dendritic cells. Current Opinion in Immunology, v. 32, p. 13–20, 2015. SEGURA, E. et al. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity, v. 38, n. 2, p. 336–48, 21 fev. 2013. SHANKARAN, V. et al. IFN g and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, v. 410, p. 1107–1111, 2001. SHIEH, S.-J. et al. Counting CD4+ and CD8+ T cells in the spleen: a novel in vivo method for assessing biomaterial immunotoxicity. Regenerative Biomaterials, v. 1, n. 1, p. 11–16, 2014. SHUFORD, B. W. W. et al. 4-1BB Costimulatory Signals Preferentially Induce CD8 T Cell Proliferation and Lead to the Amplification In Vivo of Cytotoxic T Cell Responses. Journal of Experimental Medicine, v. 186, n. 1, p. 47–55, 1997. SMITH-GARVIN, J. E.; KORETZKY, G. A.; JORDAN, M. S. T Cell Activation. Annu. Rev. Immunol, v. 27, p. 591–619, 2009. SPÖRRI, R.; REIS E SOUSA, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nature Immunology, v. 6, n. 2, p. 163–170, 2005. STEINMAN, R. M. Decisions About Dendritic Cells: Past, Present, and Future. Annual Review of Immunology, v. 30, n. 1, p. 1–22, 2012. STEINMAN, R. M.; BANCHEREAU, J. Taking dendritic cells into medicine. Nature, v. 449, n. 7161, p. 419–26, 27 set. 2007. STEINMAN, R. M.; COHN, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. Journal of Experimental Medicine, v. 137, p. 1142–1162, 1973. SUTLU, T.; ALICI, E. Natural killer cell-based immunotherapy in cancer: current insights and future prospects. Journal of internal medicine, v. 266, n. 2, p. 154–81, ago. 2009. TANCHOT, C. et al. Tumor-Infiltrating Regulatory T Cells: Phenotype, Role, Mechanism of Expansion In Situ and Clinical Significance. Cancer Microenvironment, v. 6, p. 147–157, 2013. TAO, K. et al. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer, v. 8, n. 1, p. 228, 2008. TAO, Z. et al. Breast Cancer: Epidemiology and Etiology. Cell Biochemistry and Biophysics, v. 72, p. 333–338, 2015. THOMAS, L. On Immunosurveillance in Human Cancer. The Yale Journal of Biology and Medicine, v. 55, p. 329–333, 1982. VAN KOOTEN, C.; BANCHEREAU, J. CD40-CD40 ligand. Journal of leukocyte biology, v. 67, n. 1, p. 2–17, 2000. VOPENKOVA, K. et al. Complex evaluation of human monocyte-derived dendritic cells for cancer immunotherapy. Journal of Cellular and Molecular Medicine, v. 16, n. 11, p. 2827–2837, 2012. WACLECHE, V. S. et al. The biology of monocytes and dendritic cells: Contribution to HIV pathogenesis. Viruses, v. 10, n. 2, p. 1–31, 2018. WALDMANN, T. A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nature reviews. Immunology, v. 6, n. 8, p. 595–601, ago. 2006. WALLIS, W. D.; QAZILBASH, M. H. Peripheral blood stem cell mobilization in multiple myeloma: Growth factors or chemotherapy? World Journal of Transplantation, v. 7, n. 5, p. 250–259, 2017. WANG, Q.-S. et al. Interferon-gamma incuces autophagy-associated apoptosis trough induction of cPLA2-dependent mitochondrial ROS generation in colorectal cancer cells. Biochemical and Biophisical Research Communications, v. 498, p. 1058–1065, 2018. WATHELET, N.; MOSER, M. Role of dendritic cells in the regulation of antitumor immunity. OncoImmunology, v. 2, n. 4, p. 1–6, 2013. WERMUTH, P. J.; JIMENEZ, S. A. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clinical and Translational Medicine, v. 4, n. 2, p. 1--19, 2015. WHO. World Cancer Report 2014. Lyon: International Agency for Research on Cancer, set. 2016. WORLD HEALTH ORGANISATION. Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. International Agency for Research on cancer, n. September, p. 13–15, 2018. WU, R. et al. Adoptive T-cell Therapy Using Autologous Tumor-infiltrating Lymphocytes for Metastatic Melanoma: Current Status and Future Outlook. Cancer J., v. 18, n. 2, p. 160–175, 2012. YANG, L.; ZHANG, Y. Tumor-associated macrophages: from basic research to clinical application. Journal of hematology & oncology, v. 10, n. 1, p. 58, 2017. YEE, C. et al. Adoptive T cell therapy using antigen-specific CD8? T cell clones for the treatment of patients with metastatic melanoma: persistence, migration, and antitumor effect of transferred T cells. PNAS, v. 99, n. 25, p. 16168–16173, 2002. YU, P.; FU, Y.-X. Tumor-infiltrating T lymphocytes: friends or foes? Laboratory investigation; a journal of technical methods and pathology, v. 86, n. 3, p. 231–245, 2006. ZAMAI, L. et al. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. The Journal of experimental medicine, v. 188, n. 12, p. 2375–80, 1998. ZHANG, J. et al. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood, v. 107, n. 9, p. 3600–3608, 2006.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-09-03T04:00:23Zoai:bdtd.uftm.edu.br:tede/849Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:59:37.906910Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186151145144320