Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_2262c1aecf7b542a3aa5bd0626c40090
oai_identifier_str oai:bdtd.uftm.edu.br:tede/229
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling Impactos de uma estratégia de jejum intermitente associada a treinamento de endurance na composição corporal e desempenho físico de ratos wistarJejumExercícioAptidão FísicaMetabolismoExercícios AeróbicosFastingExercisePhysical FitnessMetabolismAerobic ExerciseEducação FísicaA utilização de estratégias de emagrecimento para controle da composição corporal é bastante utilizada em esportes de alto desempenho em que o controle do peso é primordial para o bom desempenho atlético. Além disso, a prevenção e o tratamento de doenças crônicodegenerativas e seus fatores de risco são recomendados sempre através de aumento do nível de atividades físicas e controle alimentar. Dentre as práticas de controle alimentar, vem se destacando o uso do jejum intermitente. Entretanto, pouco se sabe sobre os efeitos do jejum intermitente em praticantes de atividades físicas e atletas. Assim, o objetivo deste estudo foi avaliar o efeito do treinamento de endurance associado à prática do Jejum Intermitente em aspectos metabólicos do desempenho físico, composição corporal e equilíbrio redox de ratos Wistar adultos. Para tanto, utilizou-se 26 ratos divididos em 4 grupos: Jejum Intermitente (JI) N=7, Jejum Intermitente + Exercício (JI+EX) N=7, Exercício (EX) N=6 e Controle (CON) N=6. Os animais foram submetidos a 6 semanas de treinamento de natação durante jejum diário de 18 horas. Ao final do período experimental os ratos do grupo JI+EX obtiveram maior desempenho no teste de carga progressiva em relação aos grupos CON e JI sem alterações no lactato do ponto de fadiga. Como adaptação ao treinamento em JI, também houve um aumento da atividade de citrato sintase no grupo JI+EX em relação aos grupos EX e CON. Também foi encontrado um aumento no acúmulo de gordura intramuscular no grupo JI+EX comparado com o grupo CON e ao grupo JI. Os animais do grupo JI+EX apresentaram menor massa magra ao compará-los com os animais CON e EX, porém, sem alterações no consumo alimentar. Ao avaliar a eficiência alimentar, os grupos JI e JI+EX tiveram menor eficiência alimentar em comparação com os grupos que não realizaram JI. Quando avaliada a composição corporal, o grupo JI apresentou um menor percentual do conteúdo de proteínas e maior de lipídeos em relação aos grupos EX e JI+EX; também foi encontrado uma maior massa relativa do Tecido Adiposo Marrom (TAM) dos animais JI e JI+EX tanto em relação aos CON quanto ao grupo EX. Nas análises relacionadas ao metabolismo hepático, foi encontrado um aumento dos colesteróis HDL no grupo JI+EX e ao avaliar parâmetros relacionados á atividade oxidante, o grupo JI apresentou maior peroxidação lipídica e maior carbonilação proteica em relação ao controle, enquanto os grupos que realizaram exercício apresentaram uma menor carbonilação proteica que os animais CON. Assim, foi observado que ao realizar exercício de endurance somado ao JI, os animais obtiveram um maior ganho de desempenho físico que parece ser sido a partir de adaptações metabólicas que permitiram maior utilização de energia quando necessário, como uma maior disponibilidade de colesterol HDL e maiores estoques de lipídeos no músculo esquelético. Também pôde-se perceber que o JI mostrou-se uma estratégia metabolicamente danosa, visto o grande desequilíbrio redox encontrado no fígado dos animais submetidos à estratégia. Porém, pudemos observar também o efeito benéfico encontrado na combinação dessa estratégia com o exercício de endurance no período de jejum.The use of weight loss strategies and control of body composition is widely used in high performance sports where weight control is paramount for good athletic performance. In addition, the prevention and treatment of chronic diseases and their risk factors are always recommended by increasing the level of physical activity and food control. Among the food control practices, has been increasing the use of intermittent fasting. However, little is known about the effects of intermittent fasting in practicing physical activities and athletes. The objective of this study was to evaluate the effect of endurance training associated with the practice of intermittent fasting on metabolic aspects of physical performance, body composition and redox balance of adult Wistar rats. For this, we used 26 rats divided into 4 groups: Intermittent Fasting (JI) N = 7, Intermittent Fasting + Exercise (JI + EX) N = 7 Exercise(EX) N = 6 and control(CON) n = 6. The animals were subjected to six weeks of swimming training during fasting 18 hours daily. After the trial period the JI+EX group rats had higher performance in progressive load test in relation to JI and CON groups without changes in the lactate point of fatigue. As adaptation to training during JI, there was also an increase in citrate synthase activity in the JI+EX group in relation to EX and CON groups. It was also found an increase in intramuscular fat accumulation in the JI+EX group compared to the EX group and the JI group. The animals JI+EX had lower lean body mass by comparing them with the EX and CON animals but without changes in food consumption. In assessing feed efficiency, the JI and JI+EX groups had lower feed efficiency compared to the groups that not performed JI. By assessing body composition, the JI group had a lower percentage of protein content and increased lipid in relation to JI+EX groups and EX; It was also found greater relative mass of Brown Adipose Tissue (BAT) animal JI and JI+EX both in relation to CON as the EX group. In the analyzes related to hepatic metabolism, an increase in HDL cholesterols found in JI+EX group: in the parameters related to oxidative activity, the JI group had increased lipid peroxidation and protein carbonylation compared to control, while the groups that performed exercise had a lower protein carbonyls than the CON animals. Thus, it was observed that when performing endurance exercise plus JI, the animals had the highest gain of physical performance that seems to have been the result of metabolic adaptations that allowed greater use of energy when needed, such as greater availability of HDL cholesterol and lipids largest stocks in skeletal muscle. Also it could be seen that the JI proved to be a metabolically harmful strategy, given the large redox imbalance found in the liver of animals undergoing strategy. However, we also note the beneficial effects found in combining this strategy with endurance exercise in the fasting period.Universidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Curso de Graduação em Educação FísicaBrasilUFTMPrograma de Pós-Graduação em Educação FísicaMAROCOLO JUNIOR, Moacir01338318683http://lattes.cnpq.br/8711247458807989MORAES, Ruan Carlos Macêdo de2016-05-11T13:24:29Z2016-02-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfMORAES, Ruan Carlos Macêdo de. Impactos de uma estratégia de jejum intermitente associada a treinamento de endurance na composição corporal e desempenho físico de ratos wistar. 2016. 60 f. Dissertação(Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2016.http://bdtd.uftm.edu.br/handle/tede/229porABETE, I. et al. Nutrigenetics and nutrigenomics of caloric restriction. Progress in molecular biology and translational science, [S.l.], v.108, p.323 346, 2011. AMORIM, F.; DANTAS, E. H. M. Efeitos do treinamento da capacidade aeróbica sobre a qualidade de vida e autonomia de idosos. Fitness & Performance Journal, [S.l.], v.1, n.3, p.47 55, 2002. ARAUJO, G. G. de et al. Protocols for hyperlactatemia induction in the lactate minimum test adapted to swimming rats. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, [S.l.], v.148, n.4, p.888 892, 2007. AZEVEDO, F. R. d.; IKEOKA, D.; CARAMELLI, B. Effects of intermittent fasting on metabolism in men. Revista da Associação Médica Brasileira, [S.l.], v.59, n.2, p.167 173, 2013. AZIZ, A. R. et al. Effects of Ramadan fasting on 60 min of endurance running performance in moderately trained men. British journal of sports medicine, [S.l.], v.44, n.7, p.516 521, 2010. BECK, W. R.; ARAUJO, G. G. d.; GOBATTO, C. A. Methods of exercise intensity and lactataemia determination of lactate minimum test in rats. Comparative Exercise Physiology, [S.l.], v.8, n.2, p.113 116, 2012. BÉZAIRE, V.; LANGIN, D. Regulation of adipose tissue lipolysis revisited. Proceedings of the Nutrition Society, [S.l.], v.68, n.04, p.350 360, 2009. BHUTANI, S. et al. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity, [S.l.], v.21, n.7, p.1370 1379, 2013. BLIGH, E. G.; DYER, W. J. A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, [S.l.], v.37, n.8, p.911 917, 1959. BROOKS, C. L.; GU, W. How does SIRT1 affect metabolism, senescence and cancer? Nature Reviews Cancer, [S.l.], v.9, n.2, p.123 128, 2009. BUEGE, J. A.; AUST, S. D. [30] Microsomal lipid peroxidation. Methods in enzymology, [S.l.], v.52, p.302 310, 1978. CANTÓ, C. et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell metabolism, [S.l.], v.11, n.3, p.213 219, 2010. CARLSON, M. G.; SNEAD, W. L.; CAMPBELL, P. J. Fuel and energy metabolism in fasting humans. The American journal of clinical nutrition, [S.l.], v.60, n.1, p.29 36, 1994. CARLSON, O. et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism, [S.l.], v.56, n.12, p.1729 1734, 2007. CASTELLO, L. et al. Alternate-day fasting protects the rat heart against age-induced inflammation and fibrosis by inhibiting oxidative damage and NF-kB activation. Free Radical Biology and Medicine, [S.l.], v.48, n.1, p.47 54, 2010. CHALIMONIUK, M. et al. Diversity of endurance training effects on antioxidant defenses and oxidative damage in different brain regions of adolescent male rats. JPP, [S.l.], n.4, p.07, 2015. CHAUSSE, B. et al. Intermittent Fasting Induces Hypothalamic Modifications Resulting in Low Feeding Efficiency, Low Body Mass and Overeating. Endocrinology, [S.l.], 2014. CHAUSSE, B. et al. Intermittent Fasting Results in Tissue-Specific Changes in Bioenergetics and Redox State. PloS one, [S.l.], v.10, n.3, p.e0120413, 2015. CHERIF, A. et al. Effects of Intermittent Fasting, Caloric Restriction, and Ramadan Intermittent Fasting on Cognitive Performance at Rest and During Exercise in Adults. Sports Medicine, [S.l.], p.1 13, 2015. COYLE, E. F. Physiological determinants of endurance exercise performance. Journal of Science and Medicine in Sport, [S.l.], v.2, n.3, p.181 189, 1999. CZARKOWSKA-PACZEK, B. et al. One session of exercise or endurance training does not influence serum levels of irisin in rats. JPP, [S.l.], n.3, p.15, 2014. DANNECKER, E. A. et al. The effect of fasting on indicators of muscle damage. Experimental gerontology, [S.l.], v.48, n.10, p.1101 1106, 2013. DAVIES, K. J.; PACKER, L.; BROOKS, G. A. Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Archives of Biochemistry and Biophysics, [S.l.], v.209, n.2, p.539 554, 1981. DESAUTELS, M.; DULOS, R. Effects of repeated cycles of fasting-refeeding on brown adipose tissue composition in mice. American Journal of Physiology-Endocrinology and Metabolism, [S.l.], v.255, n.2, p.E120 E128, 1988. ELLS, L. J. et al. Intermittent fasting interventions for the treatment of overweight and obesity in adults aged 18 years and over: a systematic review protocol. The JBI Database of Systematic Reviews and Implementation Reports, [S.l.], v.13, n.10, p.60 68, 2015. FARVID, M. et al. Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia. Diabetes, obesity and metabolism, [S.l.], v.7, n.4, p.406 413, 2005. GOBATTO, C. A. et al. Maximal lactate steady state in rats submitted to swimming exercise. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, [S.l.], v.130, n.1, p.21 27, 2001. GOMES, E. C.; SILVA, A. N.; OLIVEIRA, M. R. d. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxidative medicine and cellular longevity, [S.l.], v.2012, 2012. GOODPASTER, B. H.; KATSIARAS, A.; KELLEY, D. E. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes, [S.l.], v.52, n.9, p.2191 2197, 2003. GOODRICK, C. et al. Effects of intermittent feeding upon body weight and lifespan in inbred mice: interaction of genotype and age. Mechanisms of ageing and development, [S.l.], v.55, n.1, p.69 87, 1990. GOTTHARDT, J. D. et al. Intermittent Fasting Promotes Fat Loss with Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice. Endocrinology, [S.l.], p.en 2015, 2015. GUERRA, M. d. O.; PETERS, V. M. Morfometria de ratos Wistar: pesos e medidas corporais. Rev. ciênc. bioméd.(Säo Paulo), [S.l.], v.15, p.65 74, 1995. GUILLEN, C. et al. Concerted expression of the thermogenic and bioenergetic mitochondrial protein machinery in brown adipose tissue. Journal of cellular biochemistry, [S.l.], v.114, n.10, p.2306 2313, 2013. GUMAA, K. et al. The effects of fasting in Ramadan. British journal of nutrition, [S.l.], v.40, n.03, p.573 581, 1978. GUNAWARDANA, S. C.; PISTON, D. W. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes, [S.l.], v.61, n.3, p.674 682, 2012. HALBERG, N. et al. Effect of intermittent fasting and refeeding on insulin action in healthy men. Journal of Applied Physiology, [S.l.], v.99, n.6, p.2128 2136, 2005. HALLAK, M. H.; NOMANI, M. Body weight loss and changes in blood lipid levels in normal men on hypocaloric diets during Ramadan fasting. The American journal of clinical nutrition, [S.l.], v.48, n.5, p.1197 1210, 1988. HARDIE, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology, [S.l.], v.8, n.10, p.774 785, 2007. HEILBRONN, L. K. et al. Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obesity research, [S.l.], v.13, n.3, p.574 581, 2005. HOFMANN, T.; ELBELT, U.; STENGEL, A. Irisin as a muscle-derived hormone stimulating thermogenesis a critical update. Peptides, [S.l.], v.54, p.89 100, 2014. HUTCHISON, A. T.; HEILBRONN, L. K. Metabolic impacts of altering meal frequency and timing Does when we eat matter? Biochimie, [S.l.], 2015. INGJER, F. Effects of endurance training on muscle fibre ATP-ase activity, capillary supply and mitochondrial content in man. The Journal of Physiology, [S.l.], v.294, n.1, p.419 432, 1979. IWAYAMA, K. et al. Transient energy deficit induced by exercise increases 24-h fat oxidation in young trained men. Journal of Applied Physiology, [S.l.], v.118, n.1, p.80 85, 2015. IZUMIDA, Y. et al. Glycogen shortage during fasting triggers liver brain adipose neurocircuitry to facilitate fat utilization. Nature communications, [S.l.], v.4, 2013. JAKICIC, J. M. et al. American College of Sports Medicine position stand. Appropriate intervention strategies for weight loss and prevention of weight regain for adults. Medicine and science in sports and exercise, [S.l.], v.33, n.12, p.2145 2156, 2001. JI, L. L. Antioxidant enzyme response to exercise and aging. Medicine and science in sports and exercise, [S.l.], v.25, n.2, p.225 231, 1993. JI, L. L. Exercise-induced modulation of antioxidant defense. Annals of the New York Academy of Sciences, [S.l.], v.959, n.1, p.82 92, 2002. JOCKEN, J. W. et al. Adipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. The Journal of Clinical Endocrinology & Metabolism, [S.l.], v.92, n.6, p.2292 2299, 2007. KAHN, B. B. et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell metabolism, [S.l.], v.1, n.1, p.15 25, 2005. KJELDAHL, J. A new method for the determination of nitrogen in organic matter. Z. Anal. Chem, [S.l.], v.22, n.366, p.10 1007, 1883. KLEMPEL, M. C. et al. Dietary and physical activity adaptations to alternate day modified fasting: implications for optimal weight loss. Nutr J, [S.l.], v.9, p.35, 2010. KOLTAI, E. et al. Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, [S.l.], v.303, n.2, p.R127 R134, 2012. KOMI, P. V.; COMMISSION, I. M. et al. Strength and power in sport. [S.l.]: Blackwell scientific publications, 1993. LEHTI, M. et al. High-density lipoprotein maintains skeletal muscle function by modulating cellular respiration in mice. Circulation, [S.l.], p.CIRCULATIONAHA 113, 2013. LEVY, W. C. et al. Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. The American journal of cardiology, [S.l.], v.82, n.10, p.1236 1241, 1998. LI, L.; LI, Z. [Progress on relationship between exercise improving insulin resistance and AMP-activated protein kinase]. Sheng li xuebao:[ActaphysiologicaSinica], [S.l.], v.66, n.2, p.231 240, 2014. LIU, X. et al. Brown adipose tissue transplantation improves whole-body energy metabolism. Cell research, [S.l.], v.23, n.6, p.851 854, 2013. LOUCHE, K. et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. The Journal of Clinical Endocrinology & Metabolism, [S.l.], v.98, n.12, p.4863 4871, 2013. LOWRY, O. H. et al. Protein measurement with the Folin phenol reagent. J biolChem, [S.l.], v.193, n.1, p.265 275, 1951. MATTHEWS, J. et al. Analysis of serial measurements in medical research. BMJ: British Medical Journal, [S.l.], v.300, n.6719, p.230, 1990. MEKRUNGRUANGWONG, T. et al. The serum protein carbonyl content level in relation to exercise stress test. International Journal of Health & Allied Sciences, [S.l.], v.1, n.3, p.200, 2012. MORGAN, M. J.; LIU, Z.-g. Crosstalk of reactive oxygen species and NF- B signaling. Cell research, [S.l.], v.21, n.1, p.103 115, 2011. NAITO, H. et al. Exercise training increases heat shock protein in skeletal muscles of old rats. Medicine and science in sports and exercise, [S.l.], v.33, n.5, p.729 734, 2001. NAKAMURA, Y.; WALKER, B. R.; IKUTA, T. Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction. Stress, [S.l.], n.just-accepted, p.1 21, 2015. NARKAR, V. A. et al. AMPK and PPAR agonists are exercise mimetics. Cell, [S.l.], v.134, n.3, p.405 415, 2008. NERY, C. d. S. et al. Murinometric evaluations and feed efficiency in rats from reduced litter during lactation and submitted or not to swimming exercise. Revista Brasileira de Medicina do Esporte, [S.l.], v.17, n.1, p.49 55, 2011. NG, M. et al. Global, regional and national prevalence of overweight and obesity in children and adults 1980-2013: a systematic analysis. Lancet (London, England), [S.l.], v.384, n.9945, p.766, 2014. NOVELLI, E. et al. Anthropometrical parameters and markers of obesity in rats. Laboratory animals, [S.l.], v.41, n.1, p.111 119, 2007. metabolism and mitochondrial biogenesis: implications for obesity. Molecular and cellular endocrinology, [S.l.], v.366, n.2, p.135 151, 2013. PATTYN, N. et al. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome. Sports medicine, [S.l.], v.43, n.2, p.121 133, 2013. PHILP, A.; HARGREAVES, M.; BAAR, K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. American Journal of Physiology-Endocrinology And Metabolism, [S.l.], v.302, n.11, p.E1343 E1351, 2012. POEKES, L.; LANTHIER, N.; LECLERCQ, I. A. Brown adipose tissue: a potential target in the fight against obesity and the metabolic syndrome. Clinical Science, [S.l.], v.129, n.11, p.933 949, 2015. POWERS, S. K.; JACKSON, M. J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological reviews, [S.l.], v.88, n.4, p.1243 1276, 2008. PRAAG, H. van et al. Exercise, energy intake, glucose homeostasis, and the brain. The Journal of Neuroscience, [S.l.], v.34, n.46, p.15139 15149, 2014. RAVUSSIN, E.; GALGANI, J. E. The implication of brown adipose tissue for humans. Annual review of nutrition, [S.l.], v.31, p.33, 2011. ROMANINO, K. et al. Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function. Proceedings of the National Academy of Sciences, [S.l.], v.108, n.51, p.20808 20813, 2011. ROSENKILDE, M. et al. Changes in peak fat oxidation in response to different doses of endurance training. Scandinavian journal of medicine & science in sports, [S.l.], v.25, n.1, p.41 52, 2015. RYAN, A. et al. Aerobic exercise+ weight loss decreases skeletal muscle myostatin expression and improves insulin sensitivity in older adults. Obesity, [S.l.], v.21, n.7, p.1350 1356, 2013. SAKAMOTO, K.; GRUNEWALD, K. K. Beneficial effects of exercise on growth of rats during intermittent fasting. The Journal of nutrition, [S.l.], v.117, n.2, p.390 395, 1987. SALEH, S. A. et al. Effects of Ramadan fasting on waist circumference, blood pressure, lipid profile, and blood sugar on a sample of healthy Kuwaiti men and women. Mal J Nutr, [S.l.], v.11, n.2, p.143 50, 2005. SCHWEIGER, M. et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. Journal of Biological Chemistry, [S.l.], v.281, n.52, p.40236 40241, 2006. SEALS, D. R. et al. Endurance training in older men and women. I. Cardiovascular responses toexercise. Journal of Applied Physiology, [S.l.], v.57, n.4, p.1024 1029, 1984. SEDLAK, J.; LINDSAY, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl 205, 1968. SPEECHLY, D.; BUFFENSTEIN, R. Greater appetite control associated with an increased frequency of eating in lean males. Appetite, [S.l.], v.33, n.3, p.285 297, 1999. SRERE, P. Citrate synthase. Methods in enzymology, [S.l.], v.13, p.3 11, 1969. STANFORD, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. The Journal of clinical investigation, [S.l.], v.123, n.1, p.215, 2013. SUMMERMATTER, S. et al. Skeletal muscle PGC-1 controls whole-body lactate homeostasis through estrogen-related receptor -dependent activation of LDH B and repression of LDH A. Proceedings of the National Academy of Sciences, [S.l.], v.110, n.21, p.8738 8743, 2013. SVENSSON, M. B. et al. Adaptive stress response of glutathione and uric acid metabolism in man following controlled exercise and diet. Actaphysiologicascandinavica, [S.l.], v.176, n.1, p.43 56, 2002. TALANIAN, J. L. et al. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of applied physiology, [S.l.], v.102, n.4, p.1439 1447, 2007. TAMURA, Y. et al. Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, [S.l.], v.307, n.7, p.R931 R943, 2014. TIKOO, K. et al. Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53. FEBS letters, [S.l.], v.581, n.5, p.1071 1078, 2007. TINSLEY, G. M.; LA BOUNTY, P. M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutrition reviews, [S.l.], p.nuv041, 2015. TRABELSI, K. et al. Effect of fed-versus fasted state resistance training during Ramadan on body composition and selected metabolic parameters in bodybuilders. Journal of the International Society of Sports Nutrition, [S.l.], v.10, n.1, p.23, 2013. URBANCHEK, M. G. et al. Specific force deficit in skeletal muscles of old rats is partially explained by the existence of denervated muscle fibers. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, [S.l.], v.56, n.5, p.B191 B197, 2001. VARADY, K. A. et al. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. The American journal of clinical nutrition, [S.l.], v.90, n.5, p.1138 1143, 2009. VARADY, K. et al. Effects of modified alternate-day fasting regimens on adipocyte size, triglyceride metabolism, and plasma adiponectin levels in mice. Journal of lipid research, [S.l.], v.48, n.10, p.2212 2219, 2007. VESTERINEN, V. et al. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scandinavian journal of medicine & science in sports, [S.l.], v.23, n.2, p.171 180, 2013. WANG, C.-H. et al. Effects of endurance exercise training on risk components for metabolic syndrome, interleukin-6, and the exercise capacity of postmenopausal women. Geriatric nursing (New York, NY), [S.l.], 2014. WASSELIN, T. et al. Exacerbated oxidative stress in the fasting liver according to fuel partitioning. Proteomics, [S.l.], v.14, n.16, p.1905 1921, 2014. WILSON, G. et al. Fasted exercise and increased dietary protein reduces body fat and improves strength in jockeys. Int. J. Sports. Med.[Online ahead of print.] Medline, [S.l.], 2015. WINDER, W.; HARDIE, D. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism, [S.l.], v.277, n.1, p.E1 E10, 1999. WINDER, W. W.; TAYLOR, E. B.; THOMSON, D. M. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Medicine and science in sports and exercise, [S.l.], v.38, n.11, p.1945 1949, 2006. ZGHAL, F. et al. Improved tolerance of peripheral fatigue by the central nervous system after endurance training. European journal of applied physiology, [S.l.], p.1 15, 2015. ZHOU, Y. et al. The formation of brown adipose tissue induced by transgenic over-expression of PPAR 2. Biochemical and biophysical research communications, [S.l.], v.446, n.4, p.959 964, 2014.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2022-07-13T14:09:09Zoai:bdtd.uftm.edu.br:tede/229Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:58:55.731994Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186156427870208