Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_47b94d71de6ead98ce336d1b768d2952
oai_identifier_str oai:bdtd.uftm.edu.br:tede/605
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling Funcionalização do pericárdio bovino por plasma frio e análise de seu potencial como um biomaterialBiocompatibilidade.Biomaterial.Colágeno.Plasma frio.Biomaterial, biocompatibility.Collagen.Cold plasma.CiênciasO colágeno é a proteína mais abundante em mamíferos, sendo o tipo I a forma prevalente. Essa proteína possui propriedades interessantes, como baixa imunogenicidade e toxicidade, biocompatibilidade, além de promover o reconhecimento, adesão e diferenciação celular através de sequências RGD (arginina-glicina-aspartato). Por isso, o colágeno é utilizado na composição de diversos biomateriais. Contudo, após a implantação in vivo, a degradação do material por colagenases endógenas pode ocorrer rapidamente, limitando sua utilização. A funcionalização com plasma frio pode superar essa limitação, sendo capaz de adicionar uniformemente grupos funcionais na superfície de materiais e ser modulada para preservar ou alterar de maneira seletiva as propriedades do material. Este estudo buscou funcionalizar o pericárdio bovino (PB) – composto principalmente por colágeno tipo I – utilizando plasma frio a fim de obter um novo biomaterial. Para isso, amostras de PB foram tratadas com plasma de argônio e CO2 a 2,45GHz e 500 W em um intervalo tempo dede 0s (PBCT) a 240s (PB240) com incrementos de 30s. As amostras foram analisadas por espectroscopia de infravermelho e a validação da análise foi realizada através de modelagem molecular computacional. O material foi caracterizado por microscopia óptica e eletrônica de varredura, ângulo de contato e capacidade higroscópica. A biocompatibilidade do PB tratado foi verificada pela implantação do material na camada subcutânea de camundongos Balb/c durante 3, 7 15 e 30 dias. Os resultados mostraram que as modificações causadas pelo tratamento com plasma foram tempo dependente. Após 120s de tratamento (PB120) houve a adição de grupos éster na forma de ligações crosslink sem alterações à estrutura proteica. Entretanto, após 150s foi observado o início de um processo de etching e degradação do colágeno, acentuado aos 240s. Além disso, o tratamento provocou um aumento na hidrofobicidade da superfície do material. A implantação subcutânea mostrou que não houve perda na biocompatibilidade do nos grupos tratados quando comparado ao controle. Dessa forma, verificou-se que o tratamento com plasma pode ser modulado para modificar o colágeno sem que haja perdas em suas propriedades de interesse. Novos estudos são necessários para a adequação da funcionalização com plasma, direcionando-a para modificações desejadas e aplicações específicas do biomaterial.Collagen is the most commonly found protein in mammals and Type I is its most prevalent type. This protein shows interesting properties as low immunogenicity and toxicity, biocompatibility, besides the ability to promote cell recognition, differentiation and induce cell attachment through RGD (arginine-glycine-aspartate) sequences. Due to these characteristics, collagen is used in many biomaterials. However, after in vivo implantation, the degradation of the material by endogenous collagenases can occur too soon, impairing its application. Cold plasma functionalization can overcome this limitation; it is able to add evenly new functional groups on materials’ surfaces and can be tailored to preserve or alter selectively the bulk properties of the material. Therefore, this study aimed the functionalization of bovine pericardium (PB) – material composed of collagen type I – using cold plasma in order to obtain a new biomaterial. PB was treated with argon (Ar) and carbon dioxide (CO2), microwave power source 2.45Hz, 500 W. The treatment was carried out from 0 (PBCT) up to 240s (PB240), with a 30s increment. The samples were analysed by FTIR-ATR and the analysis validation was done through computing molecular modelling. The material was characterized by optical microscopy, SEM, contact angle and swelling. PB biocompatibility was assessed through subcutaneous implantation of the material in mice Balb/c for 3, 7, 15 and 30 days. The results indicated the changes caused by plasma treatment were time-dependent. By 120s of treatment (PB120) ester groups were added in the material, forming crosslink bonds without modification within the protein structure while 150s of treatment caused the beginning of an etching process and collagen degradation, which was more distinct at 240s; there was also an increase in the hydrophobicity on the surface of the treated material. The subcutaneous implantation test showed there wasn’t biocompatibility loss of treated PB when compared to control. Therefore, it was verified that plasma treatment can be tailored to modify collagen without impairing its properties of interest. New studies are necessary to suit plasma functionalization according the desired modifications and specific applications of the biomaterial.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal do Triângulo MineiroInstituto de Ciências Biológicas e Naturais - ICBNBrasilUFTMPrograma de Pós-Graduação Interdisciplinar em Biociências AplicadasROCHA, Lenaldo Branco58861726534http://lattes.cnpq.br/0054167120508364BALTAZAR, Daniela Rubio2019-01-24T19:07:50Z2018-11-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfBALTAZAR, Daniela Rubio. Funcionalização do pericárdio bovino por plasma frio e análise de seu potencial como um biomaterial. 2018. 54f. Dissertação (Mestrado em Biociências Aplicadas) - Programa de Pós-Graduação Interdisciplinar em Biociências Aplicadas, Universidade Federal do Triângulo Mineiro, Uberaba, 2018] .http://bdtd.uftm.edu.br/handle/tede/605porALLOUCHE, A.-R. Gabedit—A Graphical User Interface for Computational Chemistry Softwares. Journal of computational chemistry, v. 28, n. 1, p. 73–86, 2009. ANDREW CHAN, K. L.; KAZARIAN, S. G. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem. Soc. Rev., v. 45, n. 7, p. 1850–1864, 2016. ARYON, M.; BARBOSA, D. A. Regeneration of critical bone defects with anionic collagen matrix as scaffolds. journal of Materials Science: Materials in Medicine, v. 24, p. 2567–2575, 2013. ASTM INTERNATIONAL. ASTM F2212-02, Standard Guide for Characterization of Type I Collagen as Starting Material for Surgical Implants and Substrates for Tissue Engineered Medical Products (TEMPs). n. March, p. 14, 2008. BAKHSHANDEH, B. et al. Tissue engineering; strategies, tissues, and biomaterials. Biotechnology and Genetic Engineering Reviews, v. 33, n. 2, p. 144–172, 2017. BAX, D. V. et al. The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity. Biomaterials, v. 31, n. 9, p. 2526–2534, 2010. BAX, D. V. et al. Binding of the cell adhesive protein tropoelastin to PTFE through plasma immersion ion implantation treatment. Biomaterials, v. 32, n. 22, p. 5100–5111, 2011. BEKESCHUS, S. et al. White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Processes and Polymers, n. April, p. 1–12, 2018. BELBACHIR, K. et al. Collagen types analysis and differentiation by FTIR spectroscopy. p. 829– 837, 2009a. BELBACHIR, K. et al. Collagen types analysis and differentiation by FTIR spectroscopy. Analytical and Bioanalytical Chemistry, v. 395, n. 3, p. 829–837, 2009b. BUENO, V. B. et al. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydrate Polymers, v. 92, n. 2, p. 1091–1099, 2013. CEN, L. et al. Collagen tissue engineering: Development of novel biomaterials and applications. Pediatric Research, v. 63, n. 5, p. 492–496, 2008. CHADEFAUX, C. et al. Curve-Fitting Micro-ATR-FTIR Studies of the Amide I and II Bands of Type I Collagen in Archaeological Bone Materials. e-PRESERVATIONScience, p. 129–137, 2009. CHANGI, K. et al. Biocompatibility and immunogenicity of elastin-like recombinamer biomaterials in mouse models. Journal of Biomedical Materials Research Part A, v. 106, n. 4, p. 924–934, abr. 2018. CHEN, F. et al. Stability of plasma treated superhydrophobic surfaces under different ambient conditions. Journal of Colloid and Interface Science, v. 470, p. 221–228, maio 2016a.50 CHEN, L. et al. Synthesis and cytocompatibility of collagen/hydroxyapatite nanocomposite scaffold for bone tissue engineering. Polymer Composites, v. 37, n. 1, p. 81–90, jan. 2016b. CHEN, R. et al. In vitro response of human peripheral blood mononuclear cells (PBMC) to collagen films treated with cold plasma. Polymers, v. 9, n. 7, 2017. CHU, P. K. et al. Plasma surface modification of biomaterials. Mat. Sci. Eng. R, v. 36, n. 5, p. 143–206, 2002. CHU, P. K. Enhancement of surface properties of biomaterials using plasma-based technologies. Surface and Coatings Technology, v. 201, n. 19–20 SPEC. ISS., p. 8076–8082, 2007. DONG, C.; LV, Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers, v. 8, n. 2, p. 1–20, 2016. FRIESS, W. Collagen – biomaterial for drug delivery. Europian Journal of Pharmaceutics and Biopharmaceutics, v. 45, p. 113–136, 1998a. FRIESS, W. Collagen - Biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, v. 45, n. 2, p. 113–136, 1998b. GAO, L. et al. Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids and Surfaces B: Biointerfaces, v. 117, p. 398–405, maio 2014. GARCÍA, J. L. et al. Cell Proliferation of HaCaT Keratinocytes on Collagen Films Modified by Argon Plasma Treatment. Molecules, v. 15, n. 4, p. 2845–2856, 20 abr. 2010. GELAMO, ROGÉRIO VALENTIM; CARVALHO, F. H. O.; RODRIGUES, V. A.; MOSHKALEV, S. Syntesis of Carbon Nanostructures Near Room Temperature Using Microwave PECVD. Materials Research, v. 18, n. 4, p. 860–866, ago. 2015. GLASSFORD, S. E.; BYRNE, B.; KAZARIAN, S. G. Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochimica et Biophysica Acta - Proteins and Proteomics, v. 1834, n. 12, p. 2849–2858, 2013. IAFISCO, M. et al. Electrospun nanostructured fibers of collagen-biomimetic apatite on titanium alloyBioinorganic Chemistry and Applications, 2012. JUÁREZ-MORENO, J. A. et al. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Applied Surface Science, v. 349, p. 763–773, set. 2015. KHAN, R.; KHAN, M. H. Use of collagen as a biomaterial: An update. Journal of Indian Society of Periodontology, v. 17, n. 4, p. 539–42, 2013. KIM, S. H. et al. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. Journal of biomaterials science. Polymer edition, v. 18, n. 5, p. 609–22, 2007. KONDYURIN, A. et al. Plasma ion implantation of silk biomaterials enabling direct covalent51 immobilization of bioactive agents for enhanced cellular responses. ACS Applied Materials and Interfaces, 2018. KWOK, D. Y.; NEUMANN, A. W. Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, v. 81, n. 3, p. 167–249, set. 1999. LAMPIN, M.; LEGRIS, C.; DEGRANGE, M. Correlation between substratum roughness and wettability , cell adhesion , and cell migration. Journal of Biomedical Materials Research, v. 36, n. 1, p. 99–108, 1996. LEE, J. H. et al. Interaction of cells on chargeable functional group gradient surfaces. Biomaterials, v. 18, n. 4, p. 351–358, 1997. LEE, K. et al. Preparation and characterization of multi-layered poly(ε-caprolactone)/chitosan scaffolds fabricated with a combination of melt-plotting/in situ plasma treatment and a coating method for hard tissue regeneration. Journal of Materials Chemistry B, v. 1, n. 42, p. 5831, 2013. LEE, Y. C. et al. Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nature Communications, v. 8, p. 1–8, 2017. MENZIES, K. L.; JONES, L. The impact of contact angle on the biocompatibility of biomaterials. Optometry and vision science : official publication of the American Academy of Optometry, v. 87, n. 6, p. 387–399, 2010. METCALFE, A. D.; FERGUSON, M. W. J. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials, v. 28, n. 34, p. 5100–5113, 2007. METZGER, W. et al. Surface modification by plasma etching impairs early vascularization and tissue incorporation of porous polyethylene ( Medpor V ) implants. Journal of Biomedical Materials Research B: Applied Materials, v. 00B, n. 0, p. 1–11, 2015. MIGUEL, F. B. et al. Regeneration of critical bone defects with anionic collagen matrix as scaffolds. Journal of Materials Science: Materials in Medicine, v. 24, n. 11, p. 2567–2575, 2013. MINATI, L. et al. Plasma assisted surface treatments of biomaterials. Biophysical Chemistry, v. 229, n. July, p. 151–164, 2017. MOCHIZUKI, N. et al. No Title. Nature Biotechnology, v. 18, n. Supp, p. IT56-IT58, 1 out. 2000. MOREIRA, P. L. et al. In vitro analysis of anionic collagen scaffolds for bone repair. Journal of Biomedical Materials Research - Part B Applied Biomaterials, v. 71, n. 2, p. 229–237, 2004. MOUW, J. K.; OU, G.; WEAVER, V. M. Extracellular matrix assembly : A multiscale deconstruction. Nature Reviews, v. 15, n. 12, p. 771–785, 2014. NAUTH, A. et al. Managing bone defects. Journal of orthopaedic trauma, v. 25, n. 8, p. 462– 466, 2011. NIMNI, M. E. et al. Chemically modified collagen: A natural biomaterial for tissue replacement. Journal of Biomedical Materials Research, v. 21, n. 6, p. 741–771, 1987.52 O’BRIEN, F. J. Biomaterials & scaffolds for tissue engineering. Materials Today, v. 14, n. 3, p. 88–95, 2011. OLSEN, D. et al. Recombinant collagen and gelatin for drug delivery. Advanced Drug Delivery Reviews, v. 55, n. 12, p. 1547–1567, 2003. PAIM, F. et al. Tissue response to polyanionic collagen : elastin matrices implanted in rat calvaria. Biomaterials, v. 24, p. 207–212, 2003. PARENTEAU-BAREIL, R.; GAUVIN, R.; BERTHOD, F. Collagen-based biomaterials for tissue engineering applications. Materials, v. 3, n. 3, p. 1863–1887, 2010. PÉREZ-SÁNCHEZ, M. J. et al. Biomaterials for bone regeneration. Medicina Oral, Patologia Oral y Cirugia Bucal, v. 15, n. 3, p. 1–6, 2010. PETTENAZZO, E.; VALENTE, M.; THIENE, G. Octanediol treatment of glutaraldehyde fixed bovine pericardium: evidence of anticalcification efficacy in the subcutaneous rat model☆. European Journal of Cardio-Thoracic Surgery, v. 34, n. 2, p. 418–422, ago. 2008. PLONSKA-BRZEZINSKA, M. E. et al. Triple helical collagen-like peptide interactions with selected polyphenolic compounds. RSC Advances, v. 5, n. 116, p. 95443–95453, 2015. PONCIN-EPAILLARD, F.; LEGEAY, G. Surface engineering of biomaterials with plasma techniques. Journal of biomaterials science. Polymer edition, v. 14, n. 10, p. 1005–1028, 2003. RABOTYAGOVA, O. S. .; CEBE, P.; KAPLAN, D. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Materials Science and Engineering: C, v. 28, n. 8, p. 1420– 1429, dez. 2008. RAFAT, M. et al. Plasma surface modification and characterization of collagen-based artificial cornea for enhanced epithelialization. Journal of Applied Polymer Science, v. 106, n. 3, p. 2056– 2064, 5 nov. 2007. RAMÍREZ-GLINDON, E.; LLEDÓ-GIL, M. Biomaterials for bone regeneration. Medicina Oral, Patología Oral y Cirugía Bucal, v. 15, n. 3, p. 1–6, 2010. REHMAN, IHTESHAM UR; MOVASAGH, ZANYAR; REHMAN, S. Vibrational Spectroscopy for Tissue Analysis. 1st editio ed. [s.l: s.n.]. RIAZ, T. et al. FTIR analysis of natural and synthetic collagen. Applied Spectroscopy Reviews, v. 4928, p. 1–44, 2018. RICH, ALEXANDER; CRICK, F. H. C. The Molecular Structure of Collagen. Journal of Molecular Biology, v. 3, p. 483–506, 1961. ROCHA, L. B.; GOISSIS, G.; ROSSI, M. A. Biocompatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials, v. 23, n. 2, p. 449–456, 2002. ROY, D. et al. Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope. Optics Communications, v. 292, n. 3, p. 342–351, 2009.53 SADER, M. S. et al. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach. Materials Science and Engineering C, v. 33, n. 7, p. 4188–4196, 2013. SAMOUILLAN, V. et al. Effect of Low-Temperature Plasma Jet on Thermal Stability and Physical Structure of Type I Collagen. IEEE Transactions on Plasma Science, v. 40, n. 6, p. 1688–1695, 2012. SILVA, Z. S. et al. Effect of papain-based gel on type I collagen - spectroscopy applied for microstructural analysis. Scientific Reports, v. 5, p. 1–7, 2015. SIONKOWSKA, A.; KOZŁOWSKA, J. Properties and modification of porous 3-D collagen/hydroxyapatite composites. International Journal of Biological Macromolecules, v. 52, n. 1, p. 250–259, 2013. STENZEL, K. H.; MIYATA, T.; RUBIN, A. L. Collagen as a Biomaterial. Annual Review of Biophysics and Bioengineering, v. 3, n. 1, p. 231–253, jun. 1974. STEVENS, M. M. Biomaterials for bone Materials that enhance bone regeneration have a wealth of potential. Bone, v. 11, n. 5, p. 18–25, 2008. STEWART, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, n. 12, p. 1173–1213, 2007. SUSI, H.; ARD, J. S.; CARROLL, R. J. The infrared spectrum and water binding of collagen as a function of relative humidity. Biopolymers, v. 10, n. 9, p. 1597–1604, 1971. TAMBURACI, S.; TIHMINLIOGLU, F. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration. Materials Science and Engineering C, v. 80, p. 222– 231, 2017. TARABALLI, F. et al. Amino and carboxyl plasma functionalization of collagen films for tissue engineering applications. Journal of Colloid and Interface Science, v. 394, n. 1, p. 590–597, 2013. TAYLOR, P.; OLIVEIRA, S. M.; MANO, J. F. Cell interactions with superhydrophilic and superhydrophobic surfaces. Journal of adhesion science and technology, v. 23, n. May 2013, p. 37– 41, 2012. TENDERO, C. et al. Atmospheric pressure plasmas: A review. Spectrochimica Acta - Part B Atomic Spectroscopy, v. 61, n. 1, p. 2–30, 2006. VIDAL, B. D. C.; MELLO, M. L. S. Collagen type I amide I band infrared spectroscopy. Micron, v. 42, n. 3, p. 283–289, 2011. VOGLER, E. A. Structure and reactivity of water at biomaterial surfaces. Advances in colloid and interface science, v. 74, p. 69–117, 1998. WANG, J. H. Surface preparation techniques for biomedical applications. In: Coatings for Biomedical Applications. [s.l.] Elsevier, 2012. p. 143–175.54 WILLIAMS, D. Tissue Engineering. 1. ed. [s.l: s.n.]. WYNN, T. A.; VANNELLA, K. M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, v. 44, n. 3, p. 450–462, mar. 2016. YAN, Y. et al. Tailoring the wettability and mechanical properties of electrospun poly(L-lactic acid)- poly(glycerol sebacate) core-shell membranes for biomedical applications. Journal of Colloid and Interface Science, v. 508, p. 87–94, 2017.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-05-23T13:18:37Zoai:bdtd.uftm.edu.br:tede/605Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:59:25.052812Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186161041604608