Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_66e734cce16416a48b42afc8803d356b
oai_identifier_str oai:bdtd.uftm.edu.br:tede/1055
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling Associação do estroma tumoral com sobrevida livre de progressão e sobrevida global em neoplasias malignas de ovárioNeoplasia maligna de ovário.Tumores ovarianos borderline.Alfaactina de músculo liso.Proteína-α de ativação de fibroblastos.Microambiente tumoral.Sobrevida global.Malignant ovarian.Borderline ovarian tumors.Smooth muscle alpha-actin.Fibroblast activation protein-α.Tumor microenvironment.Overall survival.Ciências da SaúdeOBJETIVO: Os objetivos do estudo foram comparar a imunomarcação estromal de alfaactina de músculo liso (α-SMA) e proteína de ativação de fibroblastos-α (FAP) entre tumores ovarianos borderline e neoplasias malignas de ovário, como também avaliar sua associação na sobrevida global (SG) e sobrevida livre de doença (SLD) em pacientes com câncer de ovário. MÉTODOS: Foram avaliadas no estudo pacientes com diagnóstico de neoplasia maligna de ovário (n = 28) e tumor borderline de ovário (n = 18). Foi realizado estudo imunohistoquímico de α-SMA e FAP no compartimento estromal. A comparação da imunomarcação entre tumores ovarianos borderline e malignos foi realizada pelo teste exato de Fisher. A sobrevida foi avaliada pelo método de Kaplan-Meier e pelo teste de log-rank. A análise multivariada foi realizada por regressão de Cox. As diferenças foram consideradas significativas para p <0,05. RESULTADOS: Avaliando a expressão estromal de FAP, a imunomarcação (2 e 3), que é uma marcação mais intensa, foi evidenciada mais em pacientes com neoplasia maligna de ovário do que em tumores borderline de ovário (p = 0,0331). Não houve significância estatística na avaliação de α-SMA. Avaliando apenas pacientes com câncer epitelial de ovário, houve uma maior SG em pacientes com imunomarcação estromal 3 de α-SMA (p = 0,017). Não houve significância estatística ao avaliar SG e SLD em pacientes com imunomarcação estromal de FAP, nem ao avaliar SLD em pacientes com imunomarcação estromal 3 de α-SMA. Após a análise multivariada, os pacientes com imunomarcação estromal 3 de α-SMA tiveram maior SG em comparação com imunomarcação 0, 1 ou 2 [OR (95% CI) = 0,107 (0,018-0,649), p = 0,015]. CONCLUSÃO: A imunomarcação de FAP foi mais forte em neoplasia maligna de ovário comparada com a imunomarcação de pacientes com tumores ovarianos borderline. No câncer epitelial de ovário, houve uma maior SG em pacientes com imunomarcação estromal 3 de α-SMA.Objective: The aims of the study were to compare the stromal immunostaining of smooth muscle alpha-actin (α-SMA) and fibroblast activation protein-α (FAP) between borderline ovarian tumors and epithelial ovarian cancer, and to evaluate their association in overall survival (OS) and disease-free survival (SLD) in patients with ovarian cancer. Methods: Patients diagnosed with malignant (n=28) and borderline ovarian tumors (n=18) were evaluated. Immunohistochemical study of stromal α-SMA and FAP was carried out. The comparison of immunostaining between borderline and malignant ovarian tumors was performed using Fisher's exact test. Survival was assessed by the Kaplan-Meier method and the log-rank test. Multivariate analysis was performed by Cox regression. The differences were considered significant for p <0.05. Results: Evaluating stromal FAP, stronger immunostaining (2 and 3) was more found in epithelial ovarian cancer than in borderline ovarian tumors (p = 0.0331). There was no statistical significance in the assessment of α-SMA. Evaluating only patients with epithelial ovarian cancer, there was a higher OS in patients with stromal α-SMA immunostaining 3 (p = 0.017). There was no statistical significance when evaluating OS and SLD in patients with stromal FAP immunostaining, nor evaluating SLD in patients with α-SMA stromal immunostaining 3. After multivariate analysis, patients with stromal α-SMA immunostaining 3 had higher OS compared to immunostaining 0, 1 or 2 [OR (95% CI) = 0.107 (0.018-0.649), p = 0.015]. Conclusion: Stronger FAP immunostaining was more found in epithelial ovarian cancer than in borderline ovarian tumors. In epithelial ovarian cancer, there was a higher OS in patients with stromal α-SMA immunostaining 3.Associação de Apoio à Residência Médica - Minas GeraisConselho Nacional de Desenvolvimento Científico e TecnológicoCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado de Minas GeraisFundação de Ensino e Pesquisa de UberabaUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da SaúdeBrasilUFTMPrograma de Pós-Graduação em Ciências da SaúdeNOMELINI, Rosekeila Simões03651235602SILVA, Ana Caroline da2021-11-25T16:47:17Z2021-09-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfSILVA, Ana Caroline da. Associação do estroma tumoral com sobrevida livre de progressão e sobrevida global em neoplasias malignas de ovário. 2021. 71f. Tese (Doutorado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2021.http://bdtd.uftm.edu.br/handle/tede/1055porAGHAJANIAN, C. et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. v. 30, n. 17, p. 2039-45, 10 jun. 2012. ANDRAE, J.; GALLINI, R.; BETSHOLTZ, C. Role of platelet-derived growth factors in physiology and medicine. Genes & development. v. 22, n. 10, p. 1276-312, 15 mai. 2008. ANGGOROWATI, N.; et al. Histochemical and Immunohistochemical Study of α- SMA, Collagen, and PCNA in Epithelial Ovarian Neoplasm. Asian Pacific journal of cancer prevention: APJCP. v. 18. N. 3, p. 667-671, 1 mar. 2017. ARMULIK, A.; GENOVÉ, G.; BETSHOLTZ, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Developmental cell. v. 21, n. 2, p. 193-215, 16 ago. 2011. ATTIEH, Y. et al. Cancer-associated fibroblasts lead tumor invasion through integrin- β3-dependent fibronectin assembly. The Journal of cell biology. v. 216, n. 11, p. 3509-3520, 6 nov. 2014. AUGSTEN, M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Frontiers in oncology. v. 4, n. 62, s.p. 27 mar. 2014. BAE, S. et al. Fibroblast activation protein alpha identifies mesenchymal stromal cells from human bone marrow. British journal of haematology. v. 142, n. 5, p. 827-30, set. 2008. BALKWILL, F.; MANTOVANI, A. Inflammation and cancer: back to Virchow? Lancet. v. 357, n. 9255, p. 539-45, 17 fev. 2001. BERKENBLIT, A.; CANNISTRA, S.A. Advances in the management of epithelial ovarian cancer. The Journal of reproductive medicine. v. 50, n. 6, p. 426-38, jun. 2005. BREMNES, R.M. et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. v. 6, n. 1, p. 209-17, jan. 2011. BRUCHARD, M. et al. Chemotherapy-triggered cathepsin B release in myeloidderived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Medicine. v. 19, n. 1, p. 57-64, jan. 2013. BURGER, R.A.; BRADY, M.F.; BOOKMAN, M.A.; FLEMING, G.F.; MONK, B.J.; HUANG, H. Incorporation of bevacizumab in the primary treatment of ovarian cancer. The New England journal of medicine. v. 365, n. 26 p. 2473–2483, 29 dez. 2011. CHAFFER, C.L.; WEINBERG, R.A. A perspective on cancer cell metastasis. Science. v. 331, n. 6024, p. 1559-64, 25 mar. 2011. CHANG, H.Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America. v. 99, n. 20, p. 12877-82, 1 out. 2002. CHERNG S, YOUNG J, MA H. Alpha-smooth muscle actin (α-SMA). The journal of American Science. v. 4, n. 4, p. 7-9, jan. 2008. CIRRI, P.; CHIARUGI, P. Cancer associated fibroblasts: the dark side of the coin. American journal of cancer research. v. 1, n. 4, p. 482-97, 2011. COBURN, S.B. BRAY, F.; SHERMAN, M.E.; TRABERT, B. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. International journal of cancer. v. 140, n. 11, p. 2451-2460, 21 mar. 2017. COHEN, S.J.Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas. v. 37, n. 2, p. 154-8, ago. 2008. COUSSENS, L.M.; WERB, Z. Inflammation and cancer. Nature. v. 420, n. 6917, p. 860-7, 19-26 dez. 2002. COLVIN, E.K. Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Frontiers in oncology. s.v, n. 4, p. 137, 6 jun. 2014. DA SILVA, A.C.; JAMMAL, M.P.; ETCHEBEHERE, R.M.; MURTA, E.F.C.; NOMELINI, R.S. Role of Alpha-Smooth Muscle Actin and Fibroblast Activation Protein Alpha in Ovarian Neoplasms. Gynecologic and obstetric investigation. v. 83, n. 4, p. 381-387, 2018. DIRKX, A.E.; OUDE EGBRINK, M.G.; WAGSTAFF, J.; GRIFFIOEN, A.W. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of leukocyte biology. v. 80, n. 6, p. 1183-96, dez. 2006. DONNEM, T.; AL-SHIBLI, K.; AL-SAAD, S.; BUSUND, L.T.; BREMNES, R.M. Prognostic impact of fibroblast growth factor 2 in non-small cell lung cancer: coexpression with VEGFR-3 and PDGF-B predicts poor survival. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. v. 4, n. 5, p. 578-85, mai. 2009. EBERT, L.M. et al. Endothelial, pericyte and tumor cell expression in glioblastoma identifies fibroblast activation protein (FAP) as an excellent target for immunotherapy. Clinical & translational immunology. v. 9, n. 10, p. e1191, 14 out. 2020. EGEBLAD, M.; RASCH, M.G., WEAVER, V.M. Dynamic interplay between the collagen scaffold and tumor evolution. Current opinion in cell biology. v. 22, n. 5, p. 697-706, out. 2010. EO, W.K. et al. Diagnostic accuracy of inflammatory markers for distinguishing malignant and benign ovarian masses. Journal of Cancer. v. 9, n. 7, p. 1165-1172., 8 mar. 2018. FERRARA, N. VEGF as a therapeutic target in cancer. Oncology. V. 69 Suppl, n. 3, p. 11-6, 2005. FOLKMAN J. Anti-angiogenesis: new concept for therapy of solid tumors. Annals of surgery. v. 175, n. 3, p. 409-16, mar. 1972. FOLKMAN, J. Tumor angiogenesis: therapeutic implications. The New England journal of medicine. v. 285, n. 21, p. 1182-6, 18 nov. 1971. FOSTER, D.S.; JONES, R.E.; RANSOM, R.C.; LONGAKER, M.T.; NORTON, J.A. The evolving relationship of wound healing and tumor stroma. Journal of clinical investigation insight. v. 3, n. 18, p. e99911, 20 set. 2018. FRANCO, O.E.; SHAW, A.K.; STRAND, D.W.; HAYWARD, S.W. Cancer associated fibroblasts in cancer pathogenesis. Seminars in cell & developmental biology. v. 21, n. 1, p. 33-9, fev. 2010. FREEDMAN, R.S.; DEAVERS, M.; LIU, J.; WANG, E. Peritoneal inflammation - A microenvironment for Epithelial Ovarian Cancer (EOC). Journal of translational medicine. v. 2, n. 1, p. 23, 25 jun. 2004. GE, Y.; ZHAN, F.; BARLOGIE, B.; EPSTEIN, J.; SHAUGHNESSY J, JR.; YACCOBY, S. Fibroblast activation protein (FAP) is upregulated in myelomatous bone and supports myeloma cell survival. British journal of haematology. v. 133, n. 1, p. 83-92, abr. 2006. GERHARDT, H.; BETSHOLTZ, C. Endothelial-pericyte interactions in angiogenesis. Cell and tissue research. v. 314, n. 1, p. 15-23, out. 2003. GLOBOCAN 2020 - International Agency for Research on Cancer (IARC)/Cancer Registries International Agency for Research on Cancer, Worl Health Organization. Lyon, France. v.1 p.2. Disponível em: https://gco.iarc.fr/today/data/factsheets/cancers/25-Ovary-fact-sheet.pdf. Acesso em: 10 de setembro de 2021. GOFF, B.A. MANDEL, L.S.; MELANCON, C.H.; MUNTZ, H.G. Frequency of symptoms of ovarian cancer in women presenting to primary care clinics. Journal of the American Medical Association. v. 291, n. 22, p. 2705-12, 9 jun. 2004. GUALANDRIS, A. et al. Basic fibroblast growth factor overexpression in endothelial cells: an autocrine mechanism for angiogenesis and angioproliferative diseases. Cell growth & differentiation: the molecular biology journal of the American Association for Cancer Research. v. 7, n. 2, p. 147-60, fev. 1996. HAMSON, E.J.; KEANE, F.M.; THOLEN, S.; SCHILLING, O.; GORRELL, M.D. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics. Clinical applications v. 8, n. 5-6, p. 454-63, jun. 2014. HANAHAN, D.; FOLKMAN, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. v. 86, n. 3, p. 353-64, 9 ago. 1996. HANAHAN, D.; WEINBERG, R.A. The hallmarks of cancer. Cell. v. 100, n. 1, p. 57-70, 7 jan. 2000. HANSEN, J.M.; COLEMAN, R.L.; SOOD, A.K. Targeting the tumour microenvironment in ovarian cancer. European journal of cancer. v. 56, p. 131-143, 3 fev. 2016. HASHIMOTO, Y.; SKACEL, M.; ADAMS, J.C. Roles of fascin in human carcinoma motility and signaling: prospects for a novel biomarker? The international journal of biochemistry & cell biology. v. 37, n. 9, p. 1787-804, set. 2005. HAUPTMANN, S.; FRIEDRICH, K.; REDLINE, R.; AVRIL, S. Ovarian borderline tumors in the 2014 WHO classification: evolving concepts and diagnostic criteria. Virchows Archiv : an international journal of pathology. v. 470, n. 2, p. 125-142, fev. 2017. HENRY, L.R. et al. Clinical implications of fibroblast activation protein in patients with colon cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. v. 13, n. 6, p. 1736-41, 15 mar. 2017. HINSHAW, D.C.; SHEVDE, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer research. v. 79, n. 18, p. 4557-4566, 15 set. 2019. HOLMGREN, L.; O'REILLY, M.S.; FOLKMAN, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature medicine. v. 1, n. 2, p. 149-53, fev. 1995. HUGHES, C.C. Endothelial-stromal interactions in angiogenesis. Current opinion in hematology. v. 15, n. 3, p. 204-9, mai. 2008. INCA 2021. Tipos de câncer. Câncer de Ovário. https://www.inca.gov.br/assuntos/cancer-de-ovario. Acesso em 10 de setembro de 2021. JAMMAL, M.P.; MARTINS-FILHO, A.; SILVEIRA, T.P.; MURTA, E.F.; NOMELINI, R.S. Cytokines and Prognostic Factors in Epithelial Ovarian Cancer. Clinical Medicine Insights. Oncology. v. 2, n. 10, p. 71-6, ago. 2016. JAWHARI, A.U. et al. Fascin, an actin-bundling protein, modulates colonic epithelial cell invasiveness and differentiation in vitro. The American journal of pathology. v. 162(, n. 1, p. 69-80, jan. 2003. JOYCE, J.A.; FEARON, D.T. T cell exclusion, immune privilege, and the tumor microenvironment. Science. v. 348, n. 6230, p. 74–80, 2015. KALLURI, R.; WEINBERG, R.A. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. v. 119, s.n, p. 1420–1428, 2019. KALLURI, R.; ZEISBERG, M. Fibroblasts in cancer. Nature reviews. Cancer. v. 6, n. 5, p. 392-401, mai. 2006. KELLY-GOSS, M.R. et al. Targeting pericytes for angiogenic therapies. Microcirculation. v. 21, n. 4, p. 345-57, mai. 2014. KELLY, T.; HUANG, Y.; SIMMS, A.E.; MAZUR, A. Fibroblast activation protein- α: a key modulator of the microenvironment in multiple pathologies. International review of cell and molecular biology. v. 297, s,n, p. 83-116, 2012. KENNY, H.A., KRAUSZ T., YAMADA S.D., LENGYEL E. Use of a novel 3d culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. International journal of cancer. v. 121, n. 7, p. 1463-72, 1 out. 2007. KIM, K.J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. v. 362, n. 6423, p. 841-4, 29 abr, 1993. KLYMENKO, Y. et al. Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis. Oncogene. v. 36, s.n, p. 5840–5851, 2017. KNOWLES, L.M.; GURSKI, L.A.; ENGEL, C.; GNARRA, J.R.; MARANCHIE, J.K.; PILCH, J. Integrin αvβ3 and fibronectin upregulate Slug in cancer cells to promote clot invasion and metastasis. Cancer research. v. 73, n. 20, p. 6175–6184, 2013. KURMAN, R.J.; Shih, IeM. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. The American journal of pathology. v. 186, n. 4, p. 733-47, abr. 2016 LAI D, MA L, WANG F. Fibroblast activation protein regulates tumor-associated fibroblasts and epithelial ovarian cancer cells. International journal of oncology. v. 41, n. 2, p. 541-50, ago. 2012. LAU TS, et al. A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFα-TGFα-EGFR. Oncogene. v. 36, n. 25, p. 3576- 3587, 22 jun. 2017. LENGYEL, E. Ovarian cancer development and metastasis. The American journal of pathology. v. 177, n. 3, p. 1053-64, set. 2010. LEVENTAL, K.R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. v. 139, n. 5, p. 891–906, 2009. LI, J. et al. Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model. Microvascular research. v. 80, n. 1, p. 10-7, jul. 2010. LI. J. et al. FSCN1 Promotes Epithelial-Mesenchymal Transition Through Increasing Snail1 in Ovarian Cancer Cells. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. v. 49, n. 5, p. 1766-1777, 2018. LINARES, P.M.; CHAPARRO, M.; GISBERT, J.P. Angiopoietins in inflammation and their implication in the development of inflammatory bowel disease. A review. Journal of Crohn's & colitis. v. 8, n. 3, p. 183-90, 8 mar. 2014. LOUGHRAN, E.A. et al. Aging Increases Susceptibility to Ovarian Cancer Metastasis in Murine Allograft Models and Alters Immune Composition of Peritoneal Adipose Tissue. Neoplasia. v. 20, n. 6, p. 621-631, jun. 2018. LU, P.; WEAVER, V.M.; WERB, Z. The extracellular matrix: a dynamic niche in cancer progression. The Journal of cell biology. v. 196, n. 4, p. 395–406, 2012. MABUCHI, S. et al. Maintenance treatment with bevacizumab prolongs survival in an in vivo ovarian cancer model. Clinical cancer research: an official journal of the American Association for Cancer Research. v. 14, n. 23, p. 7781-9, 1 dez. 2008. MANEGOLD-BRAUER, G. et al. The special role of ultrasound for screening, staging and surveillance of malignant ovarian tumors: distinction from other methods of diagnostic imaging. Archives of gynecology and obstetrics. v. 289, n. 3, p. 491- 8, mar. 2014. MANTOVANI, A. et al. Cancer-related inflammation. Nature. v. 454, n. 7203, p. 436-44, 24 jul. 2008. MAO, Y. et al. Stromal cells in tumor microenvironment and breast cancer. Cancer metastasis reviews. v. 32, n. 1-2, p. 303-15, jun. 2013. MATTE, I.; LANE, D.; LAPLANTE, C.; RANCOURT, C.; PICHÉ, A. Profiling of cytokines in human epithelial ovarian cancer ascites. American journal of cancer research. v. 2, n. 5, p. 566-80, 2012. MCHUGH, K.M.; CRAWFORD, K.; LESSARD, J.L. A comprehensive analysis of the developmental and tissue-specific expression of the isoactin multigene family in the rat. Developmental biology. v. 148, n. 2, p. 442-58, dez. 1991. MEDEIROS, L.R. et al. Accuracy of magnetic resonance imaging in ovarian tumor: a systematic quantitative review. American journal of obstetrics and gynecology. v. 204, n. 1, p. 67.e1-10., jan. 2011. MEDINA, L.; RABINOVICH, A.; PIURA, B.; DYOMIN, V.; LEVY, R.S.; HULEIHEL, M. Expression of IL-18, IL-18 binding protein, and IL-18 receptor by normal and cancerous human ovarian tissues: possible implication of IL-18 in the pathogenesis of ovarian carcinoma. Mediators of inflammation. v. 2014, s.n, p. 914954, 2014. MHAWECH-FAUCEGLIA, P. et al. Stromal Expression of Fibroblast Activation Protein Alpha (FAP) Predicts Platinum Resistance and Shorter Recurrence in patients with Epithelial Ovarian Cancer. Cancer microenvironment: official journal of the International Cancer Microenvironment Society. v. 8, n. 1, p. 23-31, abr. 2015. MIWA, T. et al. Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Molecular and cellular biology. v. 11, n. 6, p. 3296-306, jun. 1991. MIRON, R.J.; FUJIOKA-KOBAYASHI, M.; BISHARA, M.; ZHANG, Y.; HERNANDEZ, M.; CHOUKROUN, J. Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review. Tissue engineering. Part B, Reviews. v. 23, n. 1, p. 83–99, 2017. MOHAN, R.R.; GUPTA, R.; MEHAN, M.K.; COWDEN, J.W.; SINHA, S. Decorin transfection suppresses profibrogenic genes and myofibroblast formation in human corneal fibroblasts. Experimental eye research. v. 91, n. 2, p. 238–245, 2010. MONK, B.J.; MINION, L.E.; COLEMAN, R.L. Anti-angiogenic agents in ovarian cancer: past, present, and future. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO. v. 27, n. Suppl 1, p. i33–i39, 2016. MUNN, L.L. Cancer and inflammation. Wiley interdisciplinary reviews. Systems biology and medicine. v. 9, n. 2, p. 10.1002/wsbm.1370, mar. 2017. MUÑOZ-CHÁPULI, R.; QUESADA, A.R.; ANGEL MEDINA, M. Angiogenesis and signal transduction in endothelial cells. Cellular and molecular life sciences: CMLS. v. 61, n. 17, p. 2224-43, set. 2004. MURTA, E.F.; DA SILVA, C.S.; GOMES, R.A.; TAVARES-MURTA, B.M.; MELO, A.L. Ultrasonographic criteria and tumor marker assay are good procedures for the diagnosis of ovarian neoplasia in preselected outpatients. European journal of gynaecological oncology.v.25, n.6, p.707-712, 2004. MURTA, E.F.; NOMELINI, R.S. Early diagnosis and predictors of malignancy of adnexal masses. Current opinion in obstetrics & gynecology. v.18, n.1, p.14-19, 2006. NAM, E.J. et al. Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecologic oncology. v. 116, n. 3, p. 389- 94, mar. 2010. NEZHAT, F.; DATTA, M.S.; HANSON, V.; PEJOVIC, T.; NEZHAT, C.; NEZHAT, C. The relationship of endometriosis and ovarian malignancy: a review. Fertility and sterility. v. 90, n. 5, p. 1559-70, nov. 2008. NOSSOV, V. et al. The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? American journal of obstetrics and gynecology. v. 199, n. 3, p. 215-23, set. 2008. NOY, R.; POLLARD, J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. v. 41, n. 1, p. 49-61, 20 nov. 2014. NURMIK, M.; ULLMANN, P.; RODRIGUEZ, F.; HAAN, S.; LETELLIER, E. In search of definitions: Cancer-associated fibroblasts and their markers. International journal of cancer. v. 146, n. 4, p. 895-905, 15 fev. 2020. OSTERMANN, E. et al. Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clinical cancer research: an official journal of the American Association for Cancer Research. v. 14, n. 14, p. 4584- 92, 15 jul. 2008. OSTMAN, A.; AUGSTEN, M. Cancer-associated fibroblasts and tumor growth-- bystanders turning into key players. Current opinion in genetics & development v. 19, n. 1, p. 67-73, fev. 2009. OSTMAN, A.; HELDIN, C.H. PDGF receptors as targets in tumor treatment. Advances in cancer research. v. 97, s.n, p. 247-74, 2007. OZBEK, S.; BALASUBRAMANIAN, P.G.; CHIQUET-EHRISMANN, R.; TUCKER, R.P.; ADAMS, J.C. The evolution of extracellular matrix. Molecular biology of the cell. v. 21, s.n, p. 4300–4305, 2010. PARK, S.B.; KIM, M.J.; LEE, K.H.; KO, Y. Ovarian serous surface papillary borderline tumor: characteristic imaging features with clinicopathological correlation. The British journal of radiology. v. 91, n. 1088, p. 20170689, jul. 2018. PASZEK, M.J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. v. 8, n. 3, p. 241–254, set. 2005. POLGÁR, L. The prolyl oligopeptidase family. Cellular and molecular life sciences: CMLS. v. 59, n. 2, p. 349-62, fev. 2002. POLLARD, J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nature reviews. Cancer. v. 4, n. 1, p. 71-8, jan. 2004. POLLARD, J.W. Trophic macrophages in development and disease. Nature reviews. Immunology. v. 9, n. 4, p. 259-70, abr. 2009. PUJADE-LAURAINE, E. et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. v. 32, n. 13, p. 1302-8, 1 mai. 2014. RADISKY, E.S.; RADISKY D.C. Matrix metalloproteinase-induced epithelialmesenchymal transition in breast cancer. J. Mammary Gland Biol. Journal of mammary gland biology and neoplasia. v. 15, n. 2, p. 201-12, jun. 2010. RAZA, A.; FRANKLIN, M.J.; DUDEK, A.Z. Pericytes and vessel maturation during tumor angiogenesis and metastasis. American journal of hematology. v. 85, n. 8, p. 593-8, ago. 2010. RISAU, W. Differentiation of endothelium. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. v. 9, n. 10, p. 926- 33, jul. 1995. RISAU, W.; FLAMME, I. Vasculogenesis. Annual review of cell and developmental biology. v. 11, s.n, p. 73-91, 1995. RØNNOV-JESSEN, L.; PETERSEN, O.W.; BISSELL, M.J. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiological reviews. v. 76, n. 1, p. 69-125, jan. 1996. ROVIELLO, G.; BACHELOT, T.; HUDIS, C.A. The role of bevacizumab in solid tumours: A literature based meta-analysis of randomised trials. European Journal of Cancer. v. 75, s.n, p. 245–258, abr. 2017. RUAN, G.; YE, L.; LIU, G.; AN, J.; SEHOULI, J.; SUN, P. The role of bevacizumab in targeted vascular endothelial growth factor therapy for epithelial ovarian cancer: an updated systematic review and meta-analysis. OncoTargets and therapy. v. 11, s.n, p. 521-528, 23 jan. 2018. RYNER, L. et al. Upregulation of Periostin and Reactive Stroma Is Associated with Primary Chemoresistance and Predicts Clinical Outcomes in Epithelial Ovarian Cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. v. 21, n. 13, p. 2941-51, 1 jul. 2015. SAAD, A.F.; HU, W.; SOOD, A.K. Microenvironment and pathogenesis of epithelial ovarian cancer. Hormones & cancer. v. 1, n. 6, p. 277-90, dez. 2010. SANTRA, M.; SKORSKI, T.; CALABRETTA, B.; LATTIME, E.C.; IOZZO, R.V. De novo decorin gene expression suppresses the malignant phenotype in human colon cancer cells. Proceedings of the National Academy of Sciences of the United States of America. v. 92, n. 15, p. 7016–7020, 1995. SCANLAN, M.J. et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proceedings of the National Academy of Sciences of the United States of America. v. 91, n. 12, p. 5657-61, 7 jun. 1994. SCHUBERTH, P.C. et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. Journal of translational medicine. v. 11, s.n, p. 187, 12 ago. 2013. SCHNITTERT, J.; BANSAL, R.; STORM, G.; PRAKASH, J. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Advanced drug delivery reviews. v. 129, s.n, p. 37–53, abr. 2018. SCHREIBER, R.D.; OLD, L.J.; SMYTH, M.J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. v. 331, n. 6024, p. 1565–1570, 2011. SEYNHAEVE, ALB. et al. Spatiotemporal endothelial cell - pericyte association in tumors as shown by high resolution 4D intravital imaging. Scientific reports. v. 8, n. 1, p. 9596, 25 jun. 2018. SHANG, Y.; CAI, X.; FAN, D. Roles of epithelial-mesenchymal transition in cancer drug resistance. Current cancer drug targets. v. 13, n. 9, p. 915-29, nov. 2013. SHEPRO, D.; MOREL, N.M. Pericyte physiology. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. v. 7, n. 11, p. 1031-8, ago. 1993. SHIGA, K. et al. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers. v. 7, n. 4, p. 2443-58, 11 dez. 2015. SHIH, IeM.; KURMAN, R.J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. The American journal of pathology. v. 164, n. 5, p. 1511-8, mai. 2004. SHINDE, A.V.; HUMERES, C.; FRANGOGIANNIS, N.G. The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochimica et biophysica acta. Molecular basis of disease. v. 1863, n. 1, p. 298-309, jan. 2017. SICA, A.; ALESSANDRA, S.; ALBERTO, M. Tumor-Associated Macrophages: A Molecular Perspective.International Immunopharmacology. v. 2, n. 8, p. 1045–54, jul. 2002. SINN, M. et al. α-Smooth muscle actin expression and desmoplastic stromal reaction in pancreatic cancer: results from the CONKO-001 study. Clinical cancer research: an official journal of the American Association for Cancer Research. v. 111, n. 10, p. 1917-23, 11 nov. 2014. SKALLI, O. et al. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. The Journal of cell biology. v. 103, n. 6 Pt 2, p. 2787-96, dez. 1986. SÖLÉTORMOS, G. et al. Clinical Use of Cancer Biomarkers in Epithelial Ovarian Cancer: Updated Guidelines from the European Group on Tumor Markers. International journal of gynecological cancer: official journal of the International Gynecological Cancer Society. v. 26, n. 1, p. 43-51, jan. 2016 SOLINAS, G. et al. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation Journal of leukocyte biology. v. 86, n. 5, p. 1065-73, nov. 2009. SPAETH, E.L. et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. v. 4, n. 4, p. e4992, 2009. SPAW, M.; ANANT, S.; THOMAS, S.M. Stromal contributions to the carcinogenic process. Molecular carcinogenesis. v. 56, n. 4, p. 1199-1213, abr. 2017. STAPOR, P.C. et al. Pericyte dynamics during angiogenesis: new insights from new identities. Journal of vascular research. v. 51, n. 3, p. 163-74, 2014. SUROWIAK, P. et al. Occurence of stromal myofibroblasts in the invasive ductal breast cancer tissue is an unfavourable prognostic factor. Anticancer research. v. 27, n. 4C, p. 2917-24, jul-ago. 2007. SUN, K.H. et al. α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. American journal of physiology. Lung cellular and molecular physiology. v. 310, n. 9, p. L824-36, 1 mai. 2016. TAN, H. et al. miR-382 inhibits migration and invasion by targeting ROR1 through regulating EMT in ovarian cancer. International journal of oncology. v. 48, n. 1, p. 181-90, jan. 2016. TAVASSOLI, F. A.; DEVILEE, P. (Eds.): World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Breast and Female Genital Organs. IARC Press: Lyon 2003. THIERY, J.P. Epithelial-mesenchymal transitions in tumour progression. Nature reviews. Cancer. v. 2, n. 6, p. 442-54, jun. 2002. TOMASEK, J.J. et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature reviews. Molecular cell biology. v. 3, n. 5, p. 349-63, mai. 2002. TRACY, L.E.; MINASIAN, R.A.; CATERSON, E.J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Advances in wound care. v. 5, n. 3, p. 119–136, 2016. TSUJINO, T. et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. v. 13, n. 7, p. 2082-90, 1 abr. 2007. VANDEKERCKHOVE, J.; WEBER, K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. Journal of molecular biology. v. 126, n. 4, p. 783-802, 25 dez. 1978. WADA, Y. et al. The inhibitory effect of TU-100 on hepatic stellate cell activation in the tumor microenvironment. Oncotarget. v. 11, n. 49, p. 4593-4604, 8 dez. 2020. WANG, E. et al. Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. v. 11, n. 1, p. 113-22, 1 jan. 2005. WEYMOUTH, N.; SHI, Z.; ROCKEY, D.C. Smooth muscle α actin is specifically required for the maintenance of lactation. Developmental biology. v. 363, n. 1, p. 1- 14, 1 marc. 2012. XU, M.; CAO, F.L.; LI, N.; GAO, X.; SU, X.; JIANG, X. Leptin induces epithelialto-mesenchymal transition via activation of the ERK signaling pathway in lung cancer cells. Oncology letters. v. 16, n. 4, p. 4782-4788, out. 2018. YAMAGUCHI, Y.; MANN, DM.; RUOSLAHTI, E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature. v. 346, n. 6281, p. 281–284, 1990. YILMAZ, M.; CHRISTOFORI, G.; LEHEMBRE, F. Distinct mechanisms of tumor invasion and metastasis. Trends in molecular medicine. v. 13, n. 12, p. 535-41, dez. 2007. YING, X. MicroRNA-125b Suppresses Ovarian Cancer Progression via Suppression of the Epithelial-Mesenchymal Transition Pathway by Targeting the SET Protein. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. v. 39, n. 2, p. 501-510, 2016. ZEPPERNICK, F.; MEINHOLD-HEERLEIN, I. The new FIGO staging system for ovarian, fallopian tube, and primary peritoneal câncer. Archives of gynecology and obstetrics. v. 290, p. 839-842, 2014. ZHANG, M. et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. Journal of ovarian research. v. 7, n. 19, s.p. 8 fev. 2014. ZHANG, M.; XU, L.; WANG, X.; SUN, B.; DING, J. Expression levels of seprase/FAPα and DPPIV/CD26 in epithelial ovarian carcinoma. Oncology letters. v. 10, n. 1, p. 34-42, jul. 2015. ZHANG, X.; HWANG, Y.S. Cancer-associated fibroblast stimulates cancer cell invasion in an interleukin-1 receptor (IL-1R)-dependent manner. Oncology letters. v. 18, n. 5, p. 4645-4650, nov. 2019.61 ZHANG, Y. et al. Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer letters. v. 303, n. 1, p. 47-55, 1 abr. 2011.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2021-11-26T04:00:09Zoai:bdtd.uftm.edu.br:tede/1055Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:59:35.889978Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186151091666944