Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas

Detalhes bibliográficos
Autor(a) principal: GUIMARÃES, Éder Vinícius
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
Texto Completo: http://bdtd.uftm.edu.br/handle/tede/528
Resumo: Nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 foram sintetizados e crescidos com sucesso em matriz vítrea de composição 45SiO2.30Na2CO3.5Al2O3.20B2O3 (mol%), dopada com os precursores Bi2O3, S e Co por meio do processo de fusão-nucleação e posterior tratamento térmico em temperatura de transição vítrea de 500°C, determinada experimentalmente por análise térmica diferencial. Através de métodos instrumentais de análise e técnicas de caracterização de materiais foi possível evidenciar a formação desses nanocristais. Imagens de microscopia eletrônica de transmissão revelaram o tamanho e confirmaram o crescimento de nanocristais de Bi2-xCoxS3. Com o aumento da concentração xCo nos nanocristais de Bi2-xCoxS3, ocorreu à mudança do espaçamento dos planos cristalinos da estrutura característica do Bi2S3, por causa disso, picos de difração de raios x dos nanocristais deslocaram-se para menores ângulos, dando fortes evidências da incorporação de íons Co2+ na estrutura cristalina dos nanocristais de Bi2S3. Os espectros de ressonância paramagnética eletrônica correspondente a transição eletrônica +½ ↔ -½ evidenciaram o conhecido octeto de linhas hiperfinas dos íons Co2+ quando incorporados em nanocristais de Bi2S3. Nos espectros de absorção óptica foi possível acompanhar a cinética de crescimento dos nanocristais, mediante o deslocamento para maiores comprimentos de onda (“redshift”) da borda da banda de condução de absorção óptica dos pontos quânticos de Bi2S3 em função do tratamento térmico. Tal fenômeno resultou na superposição das bandas características das transições d-d de íons Co2+ na região do visível, cuja as interações de troca sp-d entre os elétrons nos orbitais de S e Co do Bi2-xCoxS3 estabilizaram em simetria tetraédrica, possibilitando novas propriedades ópticas ao semicondutor. Com base na teoria do campo cristalino e com o auxílio dos diagramas de Tanabe-Sugano evidenciou-se que íons de Co2+ foram incorporados substitucionalmente aos de Bi3+ em sítios tetraédricos de nanocristais de Bi2S3, em razão das transições características na região espectral do visível e infravermelho próximo.
id UFTM_79a91e154871511fdc2ffeca5a1a7fc7
oai_identifier_str oai:bdtd.uftm.edu.br:tede/528
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
spelling Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreasNanocristais.Semicondutores magnéticos diluídos.Técnicas de caracterização de materiais.Teoria do campo cristalino.Nanocrystals.Diluted magnetic semiconductors.Materials characterization techniques.Crystal field theory.QuímicaNanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 foram sintetizados e crescidos com sucesso em matriz vítrea de composição 45SiO2.30Na2CO3.5Al2O3.20B2O3 (mol%), dopada com os precursores Bi2O3, S e Co por meio do processo de fusão-nucleação e posterior tratamento térmico em temperatura de transição vítrea de 500°C, determinada experimentalmente por análise térmica diferencial. Através de métodos instrumentais de análise e técnicas de caracterização de materiais foi possível evidenciar a formação desses nanocristais. Imagens de microscopia eletrônica de transmissão revelaram o tamanho e confirmaram o crescimento de nanocristais de Bi2-xCoxS3. Com o aumento da concentração xCo nos nanocristais de Bi2-xCoxS3, ocorreu à mudança do espaçamento dos planos cristalinos da estrutura característica do Bi2S3, por causa disso, picos de difração de raios x dos nanocristais deslocaram-se para menores ângulos, dando fortes evidências da incorporação de íons Co2+ na estrutura cristalina dos nanocristais de Bi2S3. Os espectros de ressonância paramagnética eletrônica correspondente a transição eletrônica +½ ↔ -½ evidenciaram o conhecido octeto de linhas hiperfinas dos íons Co2+ quando incorporados em nanocristais de Bi2S3. Nos espectros de absorção óptica foi possível acompanhar a cinética de crescimento dos nanocristais, mediante o deslocamento para maiores comprimentos de onda (“redshift”) da borda da banda de condução de absorção óptica dos pontos quânticos de Bi2S3 em função do tratamento térmico. Tal fenômeno resultou na superposição das bandas características das transições d-d de íons Co2+ na região do visível, cuja as interações de troca sp-d entre os elétrons nos orbitais de S e Co do Bi2-xCoxS3 estabilizaram em simetria tetraédrica, possibilitando novas propriedades ópticas ao semicondutor. Com base na teoria do campo cristalino e com o auxílio dos diagramas de Tanabe-Sugano evidenciou-se que íons de Co2+ foram incorporados substitucionalmente aos de Bi3+ em sítios tetraédricos de nanocristais de Bi2S3, em razão das transições características na região espectral do visível e infravermelho próximo.Diluted magnetic semiconductor nanocrystals of Bi2-xCoxS3 were successfully synthesized and grown in glass matrix of composition 45SiO2.30Na2CO3.5Al2O3.20B2O3 (mol %), doped with precursors Bi2O3, S e Co by means of the fusion-nuclear process and subsequent thermal annealing at a glass transition temperature of 500°C, determined experimentally by differential thermal analysis. Through instrumental methods of analysis and materials characterization techniques was possible evidence of the formation of these nanocrystals. Transmission Electron Microscopy images revealed the size and confirmed the growth of Bi2-xCoxS3 nanocrystals. With the increase of xCo concentration in Bi2- xCoxS3 nanocrystals, occurred to the change in the spacing of the crystalline planes of the characteristic structure of Bi2S3, because of this, nanocrystals x-ray diffraction peaks moved to smaller angles, giving strong evidence of the incorporation of Co2+ ions into the crystalline structure of Bi2S3 nanocrystals. Electron paramagnetic resonance spectra corresponding to electronic transition +½ ↔ -½ evidenced the known octet of hyperfine lines of Co2+ ions when incorporated into Bi2S3 nanocrystals. In the optical absorption spectra, it was possible to follow the growth kinetics of the nanocrystals through the displacement to greater wavelengths ("redshift") of the optical absorption conduction band edge of the quantum dots of Bi2S3 in function of the thermal annealing. This phenomenon resulted in the superposition of the characteristic bands of the d-d transitions of Co2+ ions in the visible region, whose interaction of sp-d exchange between the electrons in the S and Co orbitals of Bi2- xCoxS3 stabilized in tetrahedral symmetry, allowing new optical properties to the semiconductor. Based on crystal field theory with the help of the Tanabe–Sugano diagrams it showed that Co2+ ions were substitutionally incorporated to those of Bi3+ in tetrahedral sites of Bi2S3 nanocrystals, due to the characteristics transitions in the spectral region of the visible and near infrared.Conselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado de Minas GeraisUniversidade Federal do Triângulo MineiroInstituto de Ciências Exatas, Naturais e Educação - ICENEBrasilUFTMPrograma de Pós-Graduação Multicêntrico em Química de Minas GeraisSILVA, Ricardo Souza da03581448688http://lattes.cnpq.br/7982979995135056GUIMARÃES, Éder Vinícius2018-03-27T17:17:10Z2017-02-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfGUIMARÃES, Éder Vinícius. Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas. 2017. 116f. Dissertação (Mestrado em Química) - Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.http://bdtd.uftm.edu.br/handle/tede/528porADAMSON, A. W.; Physical Chemistry of Surfaces. New York: Wiley, 1990. AHIRE, R. R.; SANKPAL, B. R.; LOKHANDE, C. D. Preparation and characterization of Bi2S3 thin films using modified chemical bath deposition method. Mater. Rese. Bull, v. 36, p. 199, 2001. APURVA, R.; CHANDAN, S.; KATKAR, A.; SHINDE, P. Spintronics: A New Nanoelectronics Adventure. International Journal of Advanced Computer Research, v. 3(8), p. 295-300, 2013. ARCHER, P. I.; SANTANGELO, S. A.; GAMELIN, D. R. Direct Observation of sp−d Exchange Interactions in Colloidal Mn2+ and Co2+ Doped CdSe Quantum Dots. Nano Letters, v. 7, p. 1037-1043, 2007. ARCHER, P. I.; SANTANGELO, S. A.; GAMELIN, D. R. Inorganic Cluster Syntheses of TM2+-Doped Quantum Dots (CdSe, CdS, CdSe/CdS): Physical Property Dependence on Dopant Locale. Journal of the American Chemical Society, v. 129, p. 9808−9818, 2007. ARIVUOLI, D.; GNANAM, F. D.; RAMASAMY. P. Growth and microhardness studies of chalcogneides of arsenic, antimony and bismuth. Journal of materials science letters, v. 7, p. 711-713, 1988. AYTA, W. E. F.; SILVA, V. A.; DANTAS, N. O. Thermoluminescence, structural and magnetic properties of a Li2O–B2O3–Al2O3 glass system doped with LiF and TiO2. Journal of Luminescence, v. 131, p. 1002-1006, 2011. BALLHAUSEN, C. J. Molecular Electronic Structure of Transition Metal Complexes. New York: McGraw-Hill, 1979. BATAL, F. H. E. Gamma ray interaction with bismuth silicate glasses. Nuclear Instrument and Methods in Physics Research B, v. 254, p. 243-253, 2007. BHARTI, B.; KUMAR, S.; LEE, H.; KUMAR, R. Formation of oxygen vacanciesand Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific Reports, v. 6, 32355, p. 1-12, 2016. BEAULAC, R.; ARCHER, P. I.; OCHSENBEIN, S. T.; GAMELIN, D. R. "Mn2+-Doped CdSe Quantum Dots: New Inorganic Materials for Spin-Electronics and SpinPhotonics. Advanced Functional Materials, v. 18, p. 3873-3891, 2008. BEERMAN, P. A. G., 2005, Synthesis and spectroscopic characterization of manganese doped zinc sulfide quantum dots nanocrystals, Tese de Doutorado, Universidade Western Michigan, Kalamazoo-Michigan, Estados Unidos, 2005. BERRY, L. G. Studies of mineral sulpho-salts: IV galenobismutite and lillianite. Amer. Min., v. 25, p. 726–734, 1940. BINNING, G.; ROHRER, H.; GERBER, Ch.; WEIBEL, E. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett, p. 49- 57, 1982. BLACK, J.; CONWELL, E.M.; SEIGLE, L.; SPENCER, C.W. Electrical and optical properties of some M 2 v− b N 3 vi− b semiconductors. J. Phys. Chem. Solids, v. 2, p. 240-251, 1957. BRADLEY, J.; TESCHE, B.; BUSSER, W.; MAASE, M.; REETZ, M. Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metalcolloids. Journal of the American Chemical Society, v. 122(19), p. 4631, 2000. BRADY, G. S.; CLAUSER, H. R.; VACCARI, J. A. Materials handbook: [foundation for the science of metallurgy; compares the advantages and disadvantages of different manufacturing processes; comprehensive in approach]. New York: McGraw-Hill, 2002. BRAJATO, P., 2010. Síntese e caracterização do sistema vítreo B2O3-BaO-SiO2- Al2O3, Dissertação de mestrado, Universidade de São Paulo, São Carlos-SP, Brasil. BUHRO, W. E.; COLVIN, V. L. Semiconductor nanocrystals - shape matters. Nature Materials, v.2, p. 138-139, 2003. BURNS, R. G. Mineralogical Applications of Crystal Field Theory: 2 ed. Cambridge: Cambridge University Press, 1993. CADEMARTIRI, L.; SCOTOGNELLA, F.; O'BRIEN, P. G.; LOTSCH, B. V.; THOMSON, J.; PETROV, S.; KHERANI, N. P.; OZIN, G. A. Cross-linking Bi2S3 ultrathin nanowires: a platform for nanostructure formation and biomolecule detection. Nano letters, v. 9(4), p. 1482-1486, 2009. CALZIA, V., 2015, Atomistic Investigation of Morphology and Optoelectronic Properties of Bismuth Sulfide Nanostructures, Tese de Doutorado, Universitá degli Studi di Cagliari, Cagliari, Itália. CAO, Y. L.; LIU, Z. T.; CHEN, L. M.; TANG, Y. B.; LUO, L. B.; JIE, J. S.; ZHANG, W. J.; LEE, S. T.; LEE, C. S. Single-crystalline ZnTe nanowires for application as high performance Green/Ultraviolet photodetector. Opt. Express, v. 19, p. 6100-6108, 2011. CARACAS, R.; GONZE, X. First-principles study of the electronic properties of A2B3 minerals, with A=Bi,Sb and B=S,Se. Phys. Chem. of Miner., v. 32(4), p. 295-300, 2005. CHANG, R. Físico-Química: Para as Ciências Químicas e Biológicas: v 2. 3 ed. São Paulo. AMGH Ed.Ltda, 2010. DANTAS, N. O.; FANYAO, Q.; DAUD, S. P.; ALCALDE, A. M.; ALMEIDA, C. G.; DINIZ NETO, O. O.; MORAIS, P. C. The effects of external magnetic field on the surface charge distribution of spherical nanoparticles. Microelectronics Journal, v. 34, p. 471-473, 2003. DANTAS, N. O.; FERNANDES, G. L.; BAFFA, O.; GOMEZ, J. A.; SILVA, A. C. A. Controlling Densities of Manganese Ions and Cadmium Vacancies in Cd1–xMnxTe Ultrasmall Quantum Dots in a Glass Matrix: x-Concentration and Thermal Annealing. J. Phys. Chem. C, v. 119 (30), p. 17416–17420, 2015. DANTAS, N. O.; PELEGRINI, F.; NOVAK, M. A.; MORAIS, P. C.; MARQUES, G. E.; SILVA, R. S. Control of magnetic behavior by Pb1−xMnxS nanocrystals in a glass matrix. Journal of Applied Physics, v. 111, p. 064311-1−064311-5, 2012. DIETL, T.; OHNO, H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys, v. 86, p. 187–251, 2014. DING, M.; LU, C.; CAO, L.; HUANG, W.; NI, Y.; XU, Z. Transparent glass coatings incorporated with up conversion nanocrystals by laser cladding method. Applied Surface Science, v. 277, p. 176-181, 2013. DONDI, M.; ARDIT, M.; CRUCIANI, G.; ZANELLI, C. Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties. American Mineralogist, v.99 (8-9), p. 1736-1745, 2014. DRAGO, R. S. Physical methods for chemists: 2 ed. Gainesville: Surfside Scientific Publishers, 1992. DUAN, X. L.; YUAN, D. R.; CHENG, X. F.; SUN, Z. H.; SUN, H. Q.; XU, D.; LV, M. K. Spectroscopic properties of Co2+:ZnAl2O4 nanocrystals in sol-gel derived glass ceramics. Journal of Physics and Chemistry of Solids, v. 64 (6), p. 1021-1025, 2003. EFROS, AI. L.; EFROS, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond., v. 16, p. 772-775, 1982. ERWIN, S. C.; Zu, L.; HAFTEL, M. I.; EFROS, A. L.; KENNEDY, T. A.; NORRIS, D. J. Doping semiconductor nanocrystals. Nature, v.436, p. 91−94, 2005. EYCHMÜLLER, A. J. Structure and Photophysics of Semiconductor Nanocrystals. Phys. Chem. B, v.104, p. 6514-6528, 2000. FAHLMAN, B. D. Materials Chemistry: 1 ed. New York: Springer, 2007. FARIA, C. O. 2000, Simulação da Cinética do Crescimento de Pontos Quânticos Semicondutores em Vidros, Dissertação de Mestrado, Universidade Estadual de Campinas, Campinas-SP, Brasil. FARIAS, R. F. Química de Coordenação - Fundamentos e Atualidades: 2 ed. Campinas: Átomo, 2009. FERGUSON, J.; WOOD, D. L.; VAN UITERT, L. G. Crystal-Field spectra of d3,7 ions. V. Co2+ in ZnAl2O4 Spinel. Journal of Chemical Physics, v. 51 (7), p. 2904-&, 1969. FEYNMAN, R. P. There's plenty of room at the bottom. Journal of Microelectromechanical Systems, v.1, p.60-66, 1992. FIGGIS, B. N. Introduction to Ligand Fields: 1 ed. New York: Intersciences Publishers, 1966. FIGGIS, B. N.; HITCHMAN, M. A. Ligand Field Theory and Its Applications. New York: Wiley, 2000. FIORE, A.; CHEN, J. X.; ILEGEMS, M. Scaling quantum-dot light-emitting diodes to submicrometer sizes. Applied Physics Letters, v. 81, p. 1756-1758, 2002. FREITAS NETO, E. S.; DANTAS, O. N.; LOURENÇO, A. S. Carrier dynamics in the luminescent states of Cd1−xMnxS nanoparticles: effects of temperature and xconcentration. Phisycal Chemistry Chemical Phisics, v.14, p.1493-1501, 2012. FREITAS NETO, E. S., 2009, Sínteses, Caracterizações e Estudo de Pontos Quânticos de Calcogenetos de Cádmio, Dissertação de Mestrado, Universidade Federal de Uberlândia, Uberlândia-MG, Brasil. FREITAS NETO, E. S.; SILVA, A. C. A.; SILVA, S. W.; MORAIS, P. C.; GÓMEZ, J. A.; BAFFA, O.; DANTAS, N. O. Raman spectroscopy of very small Cd1-xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling. Journal of Raman Spectroscopy, v. 44, p. 1022, 2013. FURDYNA, J. K. Diluted magnetic semiconductors. J. Appl. Phys, v.64, p. R29−R64, 1988. GAPONENKO, S. V. Optical Properties of Semiconductor Nanocrystals. Cambridge: Cambridge University Press, 1998. GEBAUER, D.; KELLERMEIER, M.; GALE, J. D.; BERGSTRÖM, L.; CÖLFEN, H. Pre-nucleation clusters as solute precursors in crystallization. Chem. Soc. Rev, v. 43, p. 2348-2371, 2014. GE, Z. H.; ZHANG, B. P.; LI, J. F. Microstructure composite-like Bi2S3 polycrystals with enhanced thermoelectric properties. Journal of Materials Chemistry, v.22, p. 17589−17594, 2012. GHOSHAL, S.; KUMAR, P. S. A. Process-dependent magnetic properties of Codoped ZnO in bulk and thin film form. Journal of Magnetism and Magnetic Materials, v. 320(12), p. L93-L96, 2008. GRAHN, H. T.; Introduction to Semiconductor Physics. New York, World Scientific Publishing, 1999. GRIFFITHS, D. J. Introduction to Quantum Mechanics. New Jersey, Prentice Hall, 2004. GUO, D.; HU, C.; ZHANG, C. First-principles study on doping and temperature dependence of thermoelectric property of Bi2S3 thermoelectric material. Materials Research Bulletin, v. 48, p. 1984–1988, 2013. GUTZOW, I. S; SCHMELZER, J. W. P. The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization: 2 ed. New York, Springer-Verlag, 2013). HANG, L.; ZHANG, R.; CHEN, D.; YU, Y.; YANG, A.; WANG, Y. Tuning of multicolor emissions in glass ceramics containing Y-Ga2O3 and β-YF3 nanocrystals. J. Mater. Chem. C, v. 1, p. 1804-1811, 2013. HAN, T. P. J.; VILLEGAS, M.; PEITEADO, M.; CABALLERO, A. C.; RODRIGUEZ, F.; JAQUE, F. Low-symmetry Td-distorted Co2+ centres in ceramic ZnO:Co. Chemical Physics Letters, v. 488 (4-6), p. 173-176, 2010. HARRIS, D. C.; BERTOLUCCI, M. D. Symetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy. New York: Oxford University Press, 1978. HARRISON, M. T.; KERSHAW, S. V.; BURT, M. G.; ROGACH, A. L.; KORNOWSKI, A.; EYCHMÜLLER, A.; WELLER, H. Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dot. Pure and Applied Chemistry, v. 72, p. 295-307, 2000. HENDERSON, B.; BARTRAM, R. H. Crystal-Field Engineering of Solid State Laser Materials. Cambridge: Cambridge University Press, 2000. HENDERSON, B.; IMBUSCH, G. F. Optical Spectroscopy of Inorganic Solids. New York: Oxford University Press, 1989. HODGES, M. J.; FENTOM, J. L.; GRAY, L. J.; SCHAAK, E. R. Colloidal ZnO and Zn1−xCoxO tetrapod nanocrystals with tunable arm lengths. Nanoscale, v. 7, p. 16671-16676, 2015. HORMANN, A. L.; SHAW, C. F. J. A widespread error in the d6 Tanabe-Sugano diagram. J. Chem. Educ., v. 64, p. 918, 1987. HOUSECROFT, C. E. Química Inorgânica: volume 2. 4 ed. Rio de janeiro: LTC, 2013. HOUSE, J. E. Inorganic Chemistry: 2 ed. Oxford: Academic Press, 2013. HYUNSU, K.; CHANGHYUN, J.; SUNGHOON, P.; WAN, I. L.; IN-JOO, C.; CHONGMU, L. Structure and optical properties of Bi2S3 and Bi2O3 nanostructures synthesized via thermal evaporation and thermal oxidation routes. Chemical Engineering Journal, v. 215-216, p. 151-156, 2013. IBM Research. Disponível em: < Http://www.almaden.ibm.com> Acesso em: 26 abr. 2016. JAIN, M. K. Diluted Magnetic Semiconductors: 1 ed. Singapore: World Scientific Pub. Co., 1991. JAYANTI, K.; CHAWLA, S.; CHANDER, H.; HARANATH, D. Structural, optical and photoluminescence properties of ZnS:Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect. Crystal Research and Technology, v. 42(10), p. 976-982, 2007. JOHNSON, M. Spintronics. The journal of physical chemistry. B, v. 109(30), p.14278-14291, 2005. JIANG, J.; TSAO, S.; O'SULLIVAN, T.; ZHANG, W.; LIM, H.; SILLS, T.; MI, K.; RAZEGHI, M.; BROWN, G. J.; TIDROW, M. Z. High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition. Applied Physics Letters, v. 84, p. 2166-2168, 2004. KAPON, E. Semiconductor Lasers II: Materials and Structures. Lausanne: Academic Press, 1999. KELTER, P.; MOSHER, M. D.; SCOTT, A. Chemistry: The Practical Science: media enhanced edition 1 ed. Boston: Cengage Learning, 2008 KYONO, A.; KIMATA, M. Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3. Am. Mineral, v. 89, p. 932–940, 2004. KITTEL, C. Introdução à física do estado sólido: 8 ed. Rio de Janeiro: LTC, 2006. KLIMOV, V. I. Nanocrystal Quantum Dots From fundamental photophysics to multicolor lasing. Los Alamos Science, v. 28, p. 214-220, 2003. KLIMOV, V. I. Nanocrystal quantum dots: 2 ed. New York. Taylor & Francis Group, 2010. KOC, H.; OZISIK, H.; DELIGÖZ, E.; MAMEDOV, A. M.; OZBAY, E. Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations. Journal of Molecular Modeling, v. 20, p. 2180, 2014. KNOSS, R. W. Quantum Dots: Research, Technology and Applications. Nova Science Publishers, p. 691, 2009. KUPCIK, V.; NOVAKOVA, V. Zur Kristallstruktur des Bismuthinits, Bi2S3. Tschermaks Mineralogische Petrographische Mitteilunge, v.14, p. 55-59, 1970. LAKSHMINARAYANA, G.; BUDDHUDU, S. Spectral analysis of Mn2+, Co2+ and Ni2+: B2O3–ZnO–PbO glasses. Spectrochimica Acta Part A: molecular and biomolecular spectroscopy, v. 63(2), p. 295-304, 2006. LAKSHMI, P. V. B.; RANGANATHAN, B.; RAJKUMAR, N.; RAMACHANDRAN, K. On the ferromagnetic phase transition in nano ZnO:Mn by electron paramagnetic resonance. Int. J. Mod. Phys. B, v. 23, p. 3221-3229, 2009. LEVER, A. B. P. Inorganic Electronic Spectroscopy: 2 ed. New York : Elsevier , 1984. LIU, L.; YANG, L.; PU, Y.; XIAO, D.; ZHU, J. Optical properties of water-soluble Co2+: ZnS semiconductor nanocrystals synthesized by a hydrothermal process. Materials Letters, v. 30 66 (1), p. 121-124, 2012. LIU, X.; FURDYNA, J. K. Ferromagnetic resonance in Ga1-xMnxAs dilute magnetic semiconductors. Journal of Physics: Condensed Matter, v. 18(13), p. R245-R279, 2006, 18, R245. LOURENÇO, S. A.; DANTAS, N. O.; SILVA, R. S. Growth kinetic on the optical properties of the Pb1−xMnxSe nanocrystals embedded in a glass matrix: thermal annealing and Mn2+ concentration. Physical chemistry chemical physics: PCCP, v. 14, p.11040−11047, 2012. LUNDEGAARD, L.; MAKOVICKY, E.; BOFFA-BALLARAN, T.; BALIC-ZUNIC, T. Crystal Structure and Cation Lone Electron Pair Activity of Bi2S3 between 0 and 10GPa. Physics and Chemistry of Minerals, v. 32, p. 578-584, 2005. LUO, M.; GARCES, N. Y.; GILES, N. C.; ROY, U. N.; CUI, Y.; BURGER, A. Optical and Electron Paramagnetic Resonance Spectroscopies of Diffusion-Doped Co2+:ZnSe. Journal of Applied Physics, v. 99, p. 073709, 2006. MANSUR, H. S. Quantum dots and nanocomposites. WIREs Nanomedicine and Nanobiotechnology, v. 2, p. 113-129, 2010. MARFUNIN, A. S. Physics of Minerals and inorganic materials. Berlin: SpringerVerlag, 1979. MARTI, X.; Fina, I.; JUNGWIRTH, T. Prospect for antiferromagnetic spintronics. IEEE Transactions on Magnetics, v. 51(4), p. 1-4, 2015. MENDES JÚNIOR, D. R., 2004, Crescimento e Caracterização de Nanocristais Semicondutores em Matrizes Vítreas, Dissertação de Mestrado, Universidade Federal de Uberlândia, Uberlândia-MG, Brasil. MILLER, J. S.; DRILLON, M. Magnetism: Molecules to Materials IV. Weinheim: John Wiley & Sons, 2002. NATAF, L.; RODRIGUEZ, F.; VALIENTE, R. Pressure-induced Co2+ photoluminescence quenching in MgAl2O4. Physical Review B, v. 86, p.123-125, 2012. NATURE NANOTECHNOLOGY. Bringing solar cell efficiencies into the light. Nature Nanotechnology, v. 9, p. 657, 2014. NORRIS, D. J.; EFROS, A. L.; ERWIN, S. C. Doped Nanocrystals. Science, v. 319, p. 1776−1779, 2008. NOVATSKI, A., 2006, Preparação e caracterização do vidro aluminosilicato de cálcio dopado com TiO2, Dissertação de mestrado, Universidade Estadual de Maringá, Maringá-PR, Brasil. OHNO, H. Making Nonmagnetic Semiconductors Magnetic. Science, v. 281, p. 951 ,1998. OLIVEIRA, I. S.; Física Moderna: Para Iniciados, Interessados e Aficionados. Rio de Janeiro: CBPF, 487p. (2000). OLSEN, L. A.; SOLANO, J. L.; GARCIA, A.; ZUNIC, T. B.; MAKOVICKY, E. Dependence of the lone pair of bismuth on coordinate on environment and pressure: An ab initio study on Cu4Bi5S10 and Bi2S3. Journal of Solid State Chemistry, v. 183, p. 2133-2143, 2010. ORCHIN, M.; MACOMBER, R. S.; PINHAS, A.; WILSON, R. M. Atomic Orbital Theory., Wiley Online Library, 2005. Disponível em < http://onlinelibrary.wiley.com/> Acesso em: 24 jun. 2016. OZGUR, U.; ALIVOV, Y. I.; LIU, C.; TEKE, A.; RESHCHIKOV, M. A.; DOGAN, S.; AVRUTIN, V.; CHO, S. J.; MORKOC, H. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, v. 98, 2005. PAN, L.; PINGSHENG, H.; GANG, Z.; DAZHU, C. PbS/epoxy resin nanocomposite prepared by a novel method. Materials. Letters, v. 58, p. 176-178, 2004. PEDRO, S. S., 2011, Propriedades ópticas, magnéticas e estruturais de monocristais Cs2NaAlF6 dopados com cromo trivalente, Tese de Doutorado, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil. Programa Spectrum simulator. Disponível em: <Http://wwwchem.uwimona.edu.jm/courses/Tanabe-Sugano/TanSug>. Acesso em: 07 jul.2016. PULIZZI, F. Spintronics. Nature Materials, v. 11(15), p. 367, 2012. QIAO, B.; RUDA, H. E.; WANG, J. Multiqubit computing and error-avoiding codes in subspace using quantum dots. Journal of Applied Physics, v. 91, p. 2524-2529, 2002. QI, H.; HOU, X.; LI, Y.; SUN, Y.; ZHANG, H.; WANG, J. Co2+: LaMgAl11O19 saturable absorber Q-switch for a flash lamp pumped 1.54 μm Er: glass laser. Opt. Express, v.15 (6), 3195-3200, 2007. RASBAND, W. S. Image J, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2016. RATH, A. K.; BERNECHEA, M.; MARTINEZ, L.; KONSTANTATOS, G. SolutionProcessed Heterojunction Solar Cells Based on p-type PbS Quantum Dots and ntype Bi2S3 Nanocrystals. Advanced Materials, v. 23(32), p. 3712-3717, 2011. RAMANERY, F.; MANSUR, A.; MANSUR, H.; CARVALHO, S.; FONSECA, M. Biocompatible Fluorescent Core-Shell Nanoconjugates Based on Chitosan/Bi2S3 Quantum Dots. Nanoscale Research Letters, v.11(1), pp.1-12, 2016. ROMANO, R., 2007, Nanocompósitos e Nanoestruturas de Semicondutores das Famílias II-VI e IV-VI, Tese de Doutorado, Universidade Estadual de Campinas, Campinas-SP, Brasil. SAKURAI, J. J. Modern quantum mechanics. Los Angeles: Addison Wesley, 1994. SAMPAIO, J. A., 1997, Investigação de Vidros Aluminato de Cálcio Dopados com íons Terras-Raras, Dissertação de Mestrado, Universidade de Campinas, Campinas-SP, Brasil. SAPEGA, V. F.; MORENO, M.; RAMSTEINER, M.; DÄWERITZ, L. & Ploog, K. Electronic structure of Mn ions in (Ga,Mn)As diluted magnetic semiconductor. Phys. Rev. B, v. 66, p. 075217, 2002. SELVAKUMAR, M.; BHAT, D. K. Microwave synthesized nanostructured TiO.sub.2- activated carbon composite electrodes for supercapacitor. Applied Surface Science, v.263, p.236, 2012. SERQUEIRA, E. O., 2010, Estudo de Parâmetros Espectroscópicos de Íons de Nd3+ no Sistema Vítreo SNAB (SiO2 – Na2CO3 – Al2O3 – B2O3) Nanoestruturado com Nanocristais de CdS, Tese de Doutorado, Universidade Federal de Uberlândia, Uberlândia-MG, Brasil. SHALÍMOVA, K. V. Física de los semiconductores. Moscú. Mir, 1975. SHARPE, A. G. Química inorgánica. Barcelona. Reverte, 1996. SHELBY, J. E. Introduction to Glass Science and Technology: 2.ed. New York: Royal Society of Chemistry, 2005. SHRIVER, D. F.; ATKINS, P. W. Química Inorgânica: 4. ed. Porto Alegre: Bookman, 2008. SILVA, A. S., 2012, Crescimento, Caracterizações e Estudo de Nanocristais de ZnTe e Zn1-xMnxTe em Matrizes Vítreas, Dissertação de Mestrado, Universidade Federal de Uberlândia, Uberlândia-MG, Brasil. SILVA, A. S., 2015, Estudo de Propriedades Físicas de Nanocristais de ZnTe e Zn1-xAxTe (A = Mn; Co) no Sistema Vítreo P2O5 – ZnO – Al2O3 – BaO – PbO, Tese de Doutorado, Universidade Federal de Uberlândia, Uberlândia-MG, Brasil. SILVA, R. S., BAFFA, F. O.; LOURENÇO, S. A.; CHEN, F.; DANTAS, N. O. Luminescence in semimagnetic Pb1−xMnxSe quantum dots grown in a glass host: Radiative and nonradiative emission processes. Chemical Physics Letters, v. 567, p. 23-26, 2013. SILVA, R. S.; FREITAS NETO, E. S.; DANTAS, N. O. Optical, Magnetic, and Structural Properties of Semiconductor and Semimagnetic Nanocrystals. In: Dr. Sudheer Neralla. (Org.). Nanocrystals - Synthesis, Characterization and Applications. 26 ed. Croácia: InTech, 2012. v. 3, p. 61-80. SILVA, R. S.; MIKHAIL, H. D.; PAVANI, R.; CANO, N. F.; SILVA, A. C. A.; DANTAS, N. O. Synthesis of diluted magnetic semiconductor Bi2−xMnxTe3 nanocrystals in a host glass matrix. Journal of Alloys and Compounds, v. 648, p. 778-782, 2015. SILVA, R. S.; MORAIS, P. C.; QU, F.; ALCALDE, A. M.; DANTAS, N. O.; SULLASI, H. S. L. Synthesis process controlled magnetic properties of Pb1−xMnxS nanocrystals. Applied Physics Letters, v. 90(25), p. 253114-1− 253114-3, 2007. SILVA, R. S.; SILVA, J. T. T.; ROCHA, V. R.; CANO, N. F., SILVA, A. C.; DANTAS, N. O. Synthesis Process Controlled of Semimagnetic Bi2–xMnxS3 Nanocrystals in a Host Glass Matrix. The Journal of Physical Chemistry C, v.118 (32), p. 18730– 18735, 2014. SILVA, R. S., 2008, Síntese e Estudo das Propriedades Ópticas e Magnéticas de Pontos Quânticos de Pb1-xMnxS Crescidos em Matrizes Vítreas, Tese de Doutorado, Universidade de Brasília, Brasília-DF, Brasil. SINGH, S.; FITZSIMMONS, M. R.; JEEN, H.; BISWAS, A.;HAWLEY, M. E. Temperature dependence of nanometer-size metallic phase texture and its correlation with bulk magnetic and transport properties and defects of a (La0.4Pr0.6)0.67Ca0.33MnO3 film. Appl. Phys. Lett., v. 101(2), 2012. SMART, L. E.; MOORE, E. A. SOLID STATE CHEMISTRY, An Introduction: 3. ed. New York: Taylor & Francis Group, 2005. SOUTO, E. S., 2006, Propriedades de Spintrônica do Gás de Elétrons e Dinâmica do Íon Mn em Nano Estruturas Semicondutoras Magnéticas, Tese Doutorado, Universidade de Brasília, Brasília-DF, Brasil. SUZDAL, N. V.; PROKHORENKO, O. A.; KHALILEV, V. D. Absorption spectra of cobalt-tinted alkaliborate glasses. Glass and Ceramics, v. 60(3), p. 71-74, 2003. TANABE, Y.; SUGANO, S. On the Absorption Spectra of Complex Ions. I. Journal of the Physical Society of Japan, v. 9, n. 5, p. 753-765, 1954. TANABE, Y.; SUGANO, S. On the Absorption Spectra of Complex Ions. II. Journal of the Physical Society of Japan, v. 9, n. 5, p. 766-779, 1954. TARACHAND; SHARMA, V.; BHATT, R.; GANESAN, V.; OKRAM, G. S. A catalystfree new polyol method synthesized hot-pressed Cu doped Bi2S3 nanorods and their thermoelectric properties. Nano Research, v. 9 (11), p. 3291-3304, 2016. TERCZYŃSKA-MADEJ, A.; CHOLEWA-KOWALSKA, K.; LACZKA, M. Coordination and valence state of transition metal ions in alkali-borate glasses. Optical Materials, v. 33(12), p. 1984-1988, 2011. THE ROYAL SOCIETY & THE ROYALl ACADEMY OF ENGINEERING. Nanoscience and nanotechnologies, July 2004. TOMCZAK, N.; GOH, K. E. J. (EDS.). Scanning Probe Microscopy. Singapore: World Scientific Publishing Co. Pte. Ltd., 2011. TORRES, F. J.; RODRIGUEZ-MENDOZA, U. R.; LAVIN, V.; DE SOLA, E. R.; ALARCON, J. Evolution of the structural and optical properties from cobalt cordierite glass to glass-ceramic based on spinel crystalline phase materials. Journal of NonCrystalline Solids, v. 353 (44-46), p. 4093-4101, 2007. VARSHNEYA, A.K. Fundamentals of inorganic glasses. San Diego: Academic Press, 1994. VAZ, C. A. F.; MOUTAFIS, C.; QUITMANN, C.; RAABE, J. Luminescence-based magnetic imaging with scanning x-ray transmission microscopy. Appl. Phys. Lett., v. 101, p. 083114, 2012. VLASKIN, V. A.; BARROWS, C. J.; ERICKSON, C. S.; GAMELIN, D. R. Nanocrystal Diffusion Doping. Journal of the American Chemical Society, v. 135, p. 14380− 14389, 2013. Wikimedia Commons. Disponível em: <https://commons.wikimedia.org/wiki/File:DOS_multdim.jpg?uselang=pt-br >. Acesso em: 07 jul.2016. WILAMOWSKI, Z.; WERPACHOWSKA, A. Spintronics in semiconductors. Materials Science-Poland, V. 24, No. 3, 2006. WILLIAMS, D. B.; CARTER, C. B. Transmission Electron Microscopy: 2 ed. New York: Springer, 2009. WISE, F. W. Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. V. 33, p. 773-780, 2000. WISE, F. OE Magazine, p.24, October 2002. WOGGON, U. Optical Properties of Semicondutor Quantum Dots: 1. ed. Berlim: Springer, 1996.. WOJNAR, P.; JANIK, E.; BACZEWSKI, L. T.; KRET, S.; DYNOWSKA, E.; WOJCIECHOWSKI, T.; SUFFCZYNSKI, J.; PAPIERSKA, J.; KOSSACKI, P.; KARCZEWSKI, G.; KOSSUT, J.; WOJTOWICZ, T. Giant Spin Splitting in Optically Active ZnMnTe/ZnMgTe Core/Shell Nanowires. Nano Lett, v.12, p. 3404-3409, 2012. WOLF, S. A.; AWSCHALOM, D. D.; BUHRMAN, R. A.; DAUGHTON, J. M.; VON MOLNÁR, S.; ROUKES, M. L.; CHTCHELKANOVA, A. Y.; TREGER, D. M. Spintronics: a spin-based electronics vision for the future. Science, v.294, p. 1488- 1495, 2001. WOLF, S. A.; CHTCHELKANOVA, A. Y.; TREGER, D. M. "Spintronics-A retrospective and perspective". IBM Journal of Research and Development, v. 5, p. 101-110, 2006. WOLF, S. A.; TREGER, D. Spintronics: a new paradigm for electronics for the new millennium. IEEE Transactions on Magnetics, v. 36, p. 2748-2751, 2000. WULFSBERG, G. Inorganic Chemistry. California: University Science Books, 2000. XIN, F.; ZHAO, S.; HUANG, L.; DENG, D.; JIA, G.; WANG, H.; XU, S. Up-conversion luminescence of Er3+-doped glass ceramics containing β-NaGdF4 nanocrystals for silicon solar cells. Materials Letters, v. 78, p. 75-77, 2012. YAO, B.; WANG, P.; WANG, S.; ZHANG, M. Ce doping influence on the magnetic phase transition in In2S3:Ce nanoparticles. Cryst. Eng. Comm, v. 16, p. 2584-2588, 2014. YOFFE, A. D. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Advances in Physics, v. 42, p. 173-262, 1993. YUKALOV, V. I.; HENNER, V. K.; BELOZEROVA, T. S.; YUKALOVA, E. P. Spintronics with magnetic nanomolecules and graphene flakes. Journal of Superconductivity and Novel Magnetism, v. 29(3), p. 721-726, 2016. ZACHARIASEN, W. H. THE ATOMIC ARRANGEMENT IN GLASS. J. Am. Chem. Soc., v. 54(10), p. 3841-3851, 1932. ZARZYCKI, J. Glasses and the Vitreous State: 1.ed. New York: Cambridge University Press, 1991. ZHANG, J. J.; YU, P.; CHEN, S.Y.; LI, Y.L.; ZHU, J.G.; XIAO, D.Q. Doping-induced emission of infrared light from Co2+ doped ZnSe quantum dots. Research on Chemical Intermediates, v. 37 (2-5), p. 383-388, 2011. ZUTIC, I.; Petukhov, A. Spintronics: Shedding light on nanomagnets. Nat. Nanotechnol, v.4, p. 623-625, 2009.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2018-03-28T04:00:12Zoai:bdtd.uftm.edu.br:tede/528Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2018-03-28T04:00:12Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
dc.title.none.fl_str_mv Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas
title Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas
spellingShingle Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas
GUIMARÃES, Éder Vinícius
Nanocristais.
Semicondutores magnéticos diluídos.
Técnicas de caracterização de materiais.
Teoria do campo cristalino.
Nanocrystals.
Diluted magnetic semiconductors.
Materials characterization techniques.
Crystal field theory.
Química
title_short Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas
title_full Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas
title_fullStr Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas
title_full_unstemmed Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas
title_sort Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas
author GUIMARÃES, Éder Vinícius
author_facet GUIMARÃES, Éder Vinícius
author_role author
dc.contributor.none.fl_str_mv SILVA, Ricardo Souza da
03581448688
http://lattes.cnpq.br/7982979995135056
dc.contributor.author.fl_str_mv GUIMARÃES, Éder Vinícius
dc.subject.por.fl_str_mv Nanocristais.
Semicondutores magnéticos diluídos.
Técnicas de caracterização de materiais.
Teoria do campo cristalino.
Nanocrystals.
Diluted magnetic semiconductors.
Materials characterization techniques.
Crystal field theory.
Química
topic Nanocristais.
Semicondutores magnéticos diluídos.
Técnicas de caracterização de materiais.
Teoria do campo cristalino.
Nanocrystals.
Diluted magnetic semiconductors.
Materials characterization techniques.
Crystal field theory.
Química
description Nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 foram sintetizados e crescidos com sucesso em matriz vítrea de composição 45SiO2.30Na2CO3.5Al2O3.20B2O3 (mol%), dopada com os precursores Bi2O3, S e Co por meio do processo de fusão-nucleação e posterior tratamento térmico em temperatura de transição vítrea de 500°C, determinada experimentalmente por análise térmica diferencial. Através de métodos instrumentais de análise e técnicas de caracterização de materiais foi possível evidenciar a formação desses nanocristais. Imagens de microscopia eletrônica de transmissão revelaram o tamanho e confirmaram o crescimento de nanocristais de Bi2-xCoxS3. Com o aumento da concentração xCo nos nanocristais de Bi2-xCoxS3, ocorreu à mudança do espaçamento dos planos cristalinos da estrutura característica do Bi2S3, por causa disso, picos de difração de raios x dos nanocristais deslocaram-se para menores ângulos, dando fortes evidências da incorporação de íons Co2+ na estrutura cristalina dos nanocristais de Bi2S3. Os espectros de ressonância paramagnética eletrônica correspondente a transição eletrônica +½ ↔ -½ evidenciaram o conhecido octeto de linhas hiperfinas dos íons Co2+ quando incorporados em nanocristais de Bi2S3. Nos espectros de absorção óptica foi possível acompanhar a cinética de crescimento dos nanocristais, mediante o deslocamento para maiores comprimentos de onda (“redshift”) da borda da banda de condução de absorção óptica dos pontos quânticos de Bi2S3 em função do tratamento térmico. Tal fenômeno resultou na superposição das bandas características das transições d-d de íons Co2+ na região do visível, cuja as interações de troca sp-d entre os elétrons nos orbitais de S e Co do Bi2-xCoxS3 estabilizaram em simetria tetraédrica, possibilitando novas propriedades ópticas ao semicondutor. Com base na teoria do campo cristalino e com o auxílio dos diagramas de Tanabe-Sugano evidenciou-se que íons de Co2+ foram incorporados substitucionalmente aos de Bi3+ em sítios tetraédricos de nanocristais de Bi2S3, em razão das transições características na região espectral do visível e infravermelho próximo.
publishDate 2017
dc.date.none.fl_str_mv 2017-02-16
2018-03-27T17:17:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv GUIMARÃES, Éder Vinícius. Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas. 2017. 116f. Dissertação (Mestrado em Química) - Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.
http://bdtd.uftm.edu.br/handle/tede/528
identifier_str_mv GUIMARÃES, Éder Vinícius. Síntese e caracterização de nanocristais semicondutores magnéticos diluídos de Bi2-xCoxS3 em matrizes vítreas. 2017. 116f. Dissertação (Mestrado em Química) - Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais, Universidade Federal do Triângulo Mineiro, Uberaba, 2017.
url http://bdtd.uftm.edu.br/handle/tede/528
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv ADAMSON, A. W.; Physical Chemistry of Surfaces. New York: Wiley, 1990. AHIRE, R. R.; SANKPAL, B. R.; LOKHANDE, C. D. Preparation and characterization of Bi2S3 thin films using modified chemical bath deposition method. Mater. Rese. Bull, v. 36, p. 199, 2001. APURVA, R.; CHANDAN, S.; KATKAR, A.; SHINDE, P. Spintronics: A New Nanoelectronics Adventure. International Journal of Advanced Computer Research, v. 3(8), p. 295-300, 2013. ARCHER, P. I.; SANTANGELO, S. A.; GAMELIN, D. R. Direct Observation of sp−d Exchange Interactions in Colloidal Mn2+ and Co2+ Doped CdSe Quantum Dots. Nano Letters, v. 7, p. 1037-1043, 2007. ARCHER, P. I.; SANTANGELO, S. A.; GAMELIN, D. R. Inorganic Cluster Syntheses of TM2+-Doped Quantum Dots (CdSe, CdS, CdSe/CdS): Physical Property Dependence on Dopant Locale. Journal of the American Chemical Society, v. 129, p. 9808−9818, 2007. ARIVUOLI, D.; GNANAM, F. D.; RAMASAMY. P. Growth and microhardness studies of chalcogneides of arsenic, antimony and bismuth. Journal of materials science letters, v. 7, p. 711-713, 1988. AYTA, W. E. F.; SILVA, V. A.; DANTAS, N. O. Thermoluminescence, structural and magnetic properties of a Li2O–B2O3–Al2O3 glass system doped with LiF and TiO2. Journal of Luminescence, v. 131, p. 1002-1006, 2011. BALLHAUSEN, C. J. Molecular Electronic Structure of Transition Metal Complexes. New York: McGraw-Hill, 1979. BATAL, F. H. E. Gamma ray interaction with bismuth silicate glasses. Nuclear Instrument and Methods in Physics Research B, v. 254, p. 243-253, 2007. BHARTI, B.; KUMAR, S.; LEE, H.; KUMAR, R. Formation of oxygen vacanciesand Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific Reports, v. 6, 32355, p. 1-12, 2016. BEAULAC, R.; ARCHER, P. I.; OCHSENBEIN, S. T.; GAMELIN, D. R. "Mn2+-Doped CdSe Quantum Dots: New Inorganic Materials for Spin-Electronics and SpinPhotonics. Advanced Functional Materials, v. 18, p. 3873-3891, 2008. BEERMAN, P. A. G., 2005, Synthesis and spectroscopic characterization of manganese doped zinc sulfide quantum dots nanocrystals, Tese de Doutorado, Universidade Western Michigan, Kalamazoo-Michigan, Estados Unidos, 2005. BERRY, L. G. Studies of mineral sulpho-salts: IV galenobismutite and lillianite. Amer. Min., v. 25, p. 726–734, 1940. BINNING, G.; ROHRER, H.; GERBER, Ch.; WEIBEL, E. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett, p. 49- 57, 1982. BLACK, J.; CONWELL, E.M.; SEIGLE, L.; SPENCER, C.W. Electrical and optical properties of some M 2 v− b N 3 vi− b semiconductors. J. Phys. Chem. Solids, v. 2, p. 240-251, 1957. BRADLEY, J.; TESCHE, B.; BUSSER, W.; MAASE, M.; REETZ, M. Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metalcolloids. Journal of the American Chemical Society, v. 122(19), p. 4631, 2000. BRADY, G. S.; CLAUSER, H. R.; VACCARI, J. A. Materials handbook: [foundation for the science of metallurgy; compares the advantages and disadvantages of different manufacturing processes; comprehensive in approach]. New York: McGraw-Hill, 2002. BRAJATO, P., 2010. Síntese e caracterização do sistema vítreo B2O3-BaO-SiO2- Al2O3, Dissertação de mestrado, Universidade de São Paulo, São Carlos-SP, Brasil. BUHRO, W. E.; COLVIN, V. L. Semiconductor nanocrystals - shape matters. Nature Materials, v.2, p. 138-139, 2003. BURNS, R. G. Mineralogical Applications of Crystal Field Theory: 2 ed. Cambridge: Cambridge University Press, 1993. CADEMARTIRI, L.; SCOTOGNELLA, F.; O'BRIEN, P. G.; LOTSCH, B. V.; THOMSON, J.; PETROV, S.; KHERANI, N. P.; OZIN, G. A. Cross-linking Bi2S3 ultrathin nanowires: a platform for nanostructure formation and biomolecule detection. Nano letters, v. 9(4), p. 1482-1486, 2009. CALZIA, V., 2015, Atomistic Investigation of Morphology and Optoelectronic Properties of Bismuth Sulfide Nanostructures, Tese de Doutorado, Universitá degli Studi di Cagliari, Cagliari, Itália. CAO, Y. L.; LIU, Z. T.; CHEN, L. M.; TANG, Y. B.; LUO, L. B.; JIE, J. S.; ZHANG, W. J.; LEE, S. T.; LEE, C. S. Single-crystalline ZnTe nanowires for application as high performance Green/Ultraviolet photodetector. Opt. Express, v. 19, p. 6100-6108, 2011. CARACAS, R.; GONZE, X. First-principles study of the electronic properties of A2B3 minerals, with A=Bi,Sb and B=S,Se. Phys. Chem. of Miner., v. 32(4), p. 295-300, 2005. CHANG, R. Físico-Química: Para as Ciências Químicas e Biológicas: v 2. 3 ed. São Paulo. AMGH Ed.Ltda, 2010. DANTAS, N. O.; FANYAO, Q.; DAUD, S. P.; ALCALDE, A. M.; ALMEIDA, C. G.; DINIZ NETO, O. O.; MORAIS, P. C. The effects of external magnetic field on the surface charge distribution of spherical nanoparticles. Microelectronics Journal, v. 34, p. 471-473, 2003. DANTAS, N. O.; FERNANDES, G. L.; BAFFA, O.; GOMEZ, J. A.; SILVA, A. C. A. Controlling Densities of Manganese Ions and Cadmium Vacancies in Cd1–xMnxTe Ultrasmall Quantum Dots in a Glass Matrix: x-Concentration and Thermal Annealing. J. Phys. Chem. C, v. 119 (30), p. 17416–17420, 2015. DANTAS, N. O.; PELEGRINI, F.; NOVAK, M. A.; MORAIS, P. C.; MARQUES, G. E.; SILVA, R. S. Control of magnetic behavior by Pb1−xMnxS nanocrystals in a glass matrix. Journal of Applied Physics, v. 111, p. 064311-1−064311-5, 2012. DIETL, T.; OHNO, H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys, v. 86, p. 187–251, 2014. DING, M.; LU, C.; CAO, L.; HUANG, W.; NI, Y.; XU, Z. Transparent glass coatings incorporated with up conversion nanocrystals by laser cladding method. Applied Surface Science, v. 277, p. 176-181, 2013. DONDI, M.; ARDIT, M.; CRUCIANI, G.; ZANELLI, C. Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties. American Mineralogist, v.99 (8-9), p. 1736-1745, 2014. DRAGO, R. S. Physical methods for chemists: 2 ed. Gainesville: Surfside Scientific Publishers, 1992. DUAN, X. L.; YUAN, D. R.; CHENG, X. F.; SUN, Z. H.; SUN, H. Q.; XU, D.; LV, M. K. Spectroscopic properties of Co2+:ZnAl2O4 nanocrystals in sol-gel derived glass ceramics. Journal of Physics and Chemistry of Solids, v. 64 (6), p. 1021-1025, 2003. EFROS, AI. L.; EFROS, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond., v. 16, p. 772-775, 1982. ERWIN, S. C.; Zu, L.; HAFTEL, M. I.; EFROS, A. L.; KENNEDY, T. A.; NORRIS, D. J. Doping semiconductor nanocrystals. Nature, v.436, p. 91−94, 2005. EYCHMÜLLER, A. J. Structure and Photophysics of Semiconductor Nanocrystals. Phys. Chem. B, v.104, p. 6514-6528, 2000. FAHLMAN, B. D. Materials Chemistry: 1 ed. New York: Springer, 2007. FARIA, C. O. 2000, Simulação da Cinética do Crescimento de Pontos Quânticos Semicondutores em Vidros, Dissertação de Mestrado, Universidade Estadual de Campinas, Campinas-SP, Brasil. FARIAS, R. F. Química de Coordenação - Fundamentos e Atualidades: 2 ed. Campinas: Átomo, 2009. FERGUSON, J.; WOOD, D. L.; VAN UITERT, L. G. Crystal-Field spectra of d3,7 ions. V. Co2+ in ZnAl2O4 Spinel. Journal of Chemical Physics, v. 51 (7), p. 2904-&, 1969. FEYNMAN, R. P. There's plenty of room at the bottom. Journal of Microelectromechanical Systems, v.1, p.60-66, 1992. FIGGIS, B. N. Introduction to Ligand Fields: 1 ed. New York: Intersciences Publishers, 1966. FIGGIS, B. N.; HITCHMAN, M. A. Ligand Field Theory and Its Applications. New York: Wiley, 2000. FIORE, A.; CHEN, J. X.; ILEGEMS, M. Scaling quantum-dot light-emitting diodes to submicrometer sizes. Applied Physics Letters, v. 81, p. 1756-1758, 2002. FREITAS NETO, E. S.; DANTAS, O. N.; LOURENÇO, A. S. Carrier dynamics in the luminescent states of Cd1−xMnxS nanoparticles: effects of temperature and xconcentration. Phisycal Chemistry Chemical Phisics, v.14, p.1493-1501, 2012. FREITAS NETO, E. S., 2009, Sínteses, Caracterizações e Estudo de Pontos Quânticos de Calcogenetos de Cádmio, Dissertação de Mestrado, Universidade Federal de Uberlândia, Uberlândia-MG, Brasil. FREITAS NETO, E. S.; SILVA, A. C. A.; SILVA, S. W.; MORAIS, P. C.; GÓMEZ, J. A.; BAFFA, O.; DANTAS, N. O. Raman spectroscopy of very small Cd1-xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling. Journal of Raman Spectroscopy, v. 44, p. 1022, 2013. FURDYNA, J. K. Diluted magnetic semiconductors. J. Appl. Phys, v.64, p. R29−R64, 1988. GAPONENKO, S. V. Optical Properties of Semiconductor Nanocrystals. Cambridge: Cambridge University Press, 1998. GEBAUER, D.; KELLERMEIER, M.; GALE, J. D.; BERGSTRÖM, L.; CÖLFEN, H. Pre-nucleation clusters as solute precursors in crystallization. Chem. Soc. Rev, v. 43, p. 2348-2371, 2014. GE, Z. H.; ZHANG, B. P.; LI, J. F. Microstructure composite-like Bi2S3 polycrystals with enhanced thermoelectric properties. Journal of Materials Chemistry, v.22, p. 17589−17594, 2012. GHOSHAL, S.; KUMAR, P. S. A. Process-dependent magnetic properties of Codoped ZnO in bulk and thin film form. Journal of Magnetism and Magnetic Materials, v. 320(12), p. L93-L96, 2008. GRAHN, H. T.; Introduction to Semiconductor Physics. New York, World Scientific Publishing, 1999. GRIFFITHS, D. J. Introduction to Quantum Mechanics. New Jersey, Prentice Hall, 2004. GUO, D.; HU, C.; ZHANG, C. First-principles study on doping and temperature dependence of thermoelectric property of Bi2S3 thermoelectric material. Materials Research Bulletin, v. 48, p. 1984–1988, 2013. GUTZOW, I. S; SCHMELZER, J. W. P. The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization: 2 ed. New York, Springer-Verlag, 2013). HANG, L.; ZHANG, R.; CHEN, D.; YU, Y.; YANG, A.; WANG, Y. Tuning of multicolor emissions in glass ceramics containing Y-Ga2O3 and β-YF3 nanocrystals. J. Mater. Chem. C, v. 1, p. 1804-1811, 2013. HAN, T. P. J.; VILLEGAS, M.; PEITEADO, M.; CABALLERO, A. C.; RODRIGUEZ, F.; JAQUE, F. Low-symmetry Td-distorted Co2+ centres in ceramic ZnO:Co. Chemical Physics Letters, v. 488 (4-6), p. 173-176, 2010. HARRIS, D. C.; BERTOLUCCI, M. D. Symetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy. New York: Oxford University Press, 1978. HARRISON, M. T.; KERSHAW, S. V.; BURT, M. G.; ROGACH, A. L.; KORNOWSKI, A.; EYCHMÜLLER, A.; WELLER, H. Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dot. Pure and Applied Chemistry, v. 72, p. 295-307, 2000. HENDERSON, B.; BARTRAM, R. H. Crystal-Field Engineering of Solid State Laser Materials. Cambridge: Cambridge University Press, 2000. HENDERSON, B.; IMBUSCH, G. F. Optical Spectroscopy of Inorganic Solids. New York: Oxford University Press, 1989. HODGES, M. J.; FENTOM, J. L.; GRAY, L. J.; SCHAAK, E. R. Colloidal ZnO and Zn1−xCoxO tetrapod nanocrystals with tunable arm lengths. Nanoscale, v. 7, p. 16671-16676, 2015. HORMANN, A. L.; SHAW, C. F. J. A widespread error in the d6 Tanabe-Sugano diagram. J. Chem. Educ., v. 64, p. 918, 1987. HOUSECROFT, C. E. Química Inorgânica: volume 2. 4 ed. Rio de janeiro: LTC, 2013. HOUSE, J. E. Inorganic Chemistry: 2 ed. Oxford: Academic Press, 2013. HYUNSU, K.; CHANGHYUN, J.; SUNGHOON, P.; WAN, I. L.; IN-JOO, C.; CHONGMU, L. Structure and optical properties of Bi2S3 and Bi2O3 nanostructures synthesized via thermal evaporation and thermal oxidation routes. Chemical Engineering Journal, v. 215-216, p. 151-156, 2013. IBM Research. Disponível em: < Http://www.almaden.ibm.com> Acesso em: 26 abr. 2016. JAIN, M. K. Diluted Magnetic Semiconductors: 1 ed. Singapore: World Scientific Pub. Co., 1991. JAYANTI, K.; CHAWLA, S.; CHANDER, H.; HARANATH, D. Structural, optical and photoluminescence properties of ZnS:Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect. Crystal Research and Technology, v. 42(10), p. 976-982, 2007. JOHNSON, M. Spintronics. The journal of physical chemistry. B, v. 109(30), p.14278-14291, 2005. JIANG, J.; TSAO, S.; O'SULLIVAN, T.; ZHANG, W.; LIM, H.; SILLS, T.; MI, K.; RAZEGHI, M.; BROWN, G. J.; TIDROW, M. Z. High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition. Applied Physics Letters, v. 84, p. 2166-2168, 2004. KAPON, E. Semiconductor Lasers II: Materials and Structures. Lausanne: Academic Press, 1999. KELTER, P.; MOSHER, M. D.; SCOTT, A. Chemistry: The Practical Science: media enhanced edition 1 ed. Boston: Cengage Learning, 2008 KYONO, A.; KIMATA, M. Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3. Am. Mineral, v. 89, p. 932–940, 2004. KITTEL, C. Introdução à física do estado sólido: 8 ed. Rio de Janeiro: LTC, 2006. KLIMOV, V. I. Nanocrystal Quantum Dots From fundamental photophysics to multicolor lasing. Los Alamos Science, v. 28, p. 214-220, 2003. KLIMOV, V. I. Nanocrystal quantum dots: 2 ed. New York. Taylor & Francis Group, 2010. KOC, H.; OZISIK, H.; DELIGÖZ, E.; MAMEDOV, A. M.; OZBAY, E. Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations. Journal of Molecular Modeling, v. 20, p. 2180, 2014. KNOSS, R. W. Quantum Dots: Research, Technology and Applications. Nova Science Publishers, p. 691, 2009. KUPCIK, V.; NOVAKOVA, V. Zur Kristallstruktur des Bismuthinits, Bi2S3. Tschermaks Mineralogische Petrographische Mitteilunge, v.14, p. 55-59, 1970. LAKSHMINARAYANA, G.; BUDDHUDU, S. Spectral analysis of Mn2+, Co2+ and Ni2+: B2O3–ZnO–PbO glasses. Spectrochimica Acta Part A: molecular and biomolecular spectroscopy, v. 63(2), p. 295-304, 2006. LAKSHMI, P. V. B.; RANGANATHAN, B.; RAJKUMAR, N.; RAMACHANDRAN, K. On the ferromagnetic phase transition in nano ZnO:Mn by electron paramagnetic resonance. Int. J. Mod. Phys. B, v. 23, p. 3221-3229, 2009. LEVER, A. B. P. Inorganic Electronic Spectroscopy: 2 ed. New York : Elsevier , 1984. LIU, L.; YANG, L.; PU, Y.; XIAO, D.; ZHU, J. Optical properties of water-soluble Co2+: ZnS semiconductor nanocrystals synthesized by a hydrothermal process. Materials Letters, v. 30 66 (1), p. 121-124, 2012. LIU, X.; FURDYNA, J. K. Ferromagnetic resonance in Ga1-xMnxAs dilute magnetic semiconductors. Journal of Physics: Condensed Matter, v. 18(13), p. R245-R279, 2006, 18, R245. LOURENÇO, S. A.; DANTAS, N. O.; SILVA, R. S. Growth kinetic on the optical properties of the Pb1−xMnxSe nanocrystals embedded in a glass matrix: thermal annealing and Mn2+ concentration. Physical chemistry chemical physics: PCCP, v. 14, p.11040−11047, 2012. LUNDEGAARD, L.; MAKOVICKY, E.; BOFFA-BALLARAN, T.; BALIC-ZUNIC, T. Crystal Structure and Cation Lone Electron Pair Activity of Bi2S3 between 0 and 10GPa. Physics and Chemistry of Minerals, v. 32, p. 578-584, 2005. LUO, M.; GARCES, N. Y.; GILES, N. C.; ROY, U. N.; CUI, Y.; BURGER, A. Optical and Electron Paramagnetic Resonance Spectroscopies of Diffusion-Doped Co2+:ZnSe. Journal of Applied Physics, v. 99, p. 073709, 2006. MANSUR, H. S. Quantum dots and nanocomposites. WIREs Nanomedicine and Nanobiotechnology, v. 2, p. 113-129, 2010. MARFUNIN, A. S. Physics of Minerals and inorganic materials. Berlin: SpringerVerlag, 1979. MARTI, X.; Fina, I.; JUNGWIRTH, T. Prospect for antiferromagnetic spintronics. IEEE Transactions on Magnetics, v. 51(4), p. 1-4, 2015. MENDES JÚNIOR, D. R., 2004, Crescimento e Caracterização de Nanocristais Semicondutores em Matrizes Vítreas, Dissertação de Mestrado, Universidade Federal de Uberlândia, Uberlândia-MG, Brasil. MILLER, J. S.; DRILLON, M. Magnetism: Molecules to Materials IV. Weinheim: John Wiley & Sons, 2002. NATAF, L.; RODRIGUEZ, F.; VALIENTE, R. Pressure-induced Co2+ photoluminescence quenching in MgAl2O4. Physical Review B, v. 86, p.123-125, 2012. NATURE NANOTECHNOLOGY. Bringing solar cell efficiencies into the light. Nature Nanotechnology, v. 9, p. 657, 2014. NORRIS, D. J.; EFROS, A. L.; ERWIN, S. C. Doped Nanocrystals. Science, v. 319, p. 1776−1779, 2008. NOVATSKI, A., 2006, Preparação e caracterização do vidro aluminosilicato de cálcio dopado com TiO2, Dissertação de mestrado, Universidade Estadual de Maringá, Maringá-PR, Brasil. OHNO, H. Making Nonmagnetic Semiconductors Magnetic. Science, v. 281, p. 951 ,1998. OLIVEIRA, I. S.; Física Moderna: Para Iniciados, Interessados e Aficionados. Rio de Janeiro: CBPF, 487p. (2000). OLSEN, L. A.; SOLANO, J. L.; GARCIA, A.; ZUNIC, T. B.; MAKOVICKY, E. Dependence of the lone pair of bismuth on coordinate on environment and pressure: An ab initio study on Cu4Bi5S10 and Bi2S3. Journal of Solid State Chemistry, v. 183, p. 2133-2143, 2010. ORCHIN, M.; MACOMBER, R. S.; PINHAS, A.; WILSON, R. M. Atomic Orbital Theory., Wiley Online Library, 2005. Disponível em < http://onlinelibrary.wiley.com/> Acesso em: 24 jun. 2016. OZGUR, U.; ALIVOV, Y. I.; LIU, C.; TEKE, A.; RESHCHIKOV, M. A.; DOGAN, S.; AVRUTIN, V.; CHO, S. J.; MORKOC, H. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, v. 98, 2005. PAN, L.; PINGSHENG, H.; GANG, Z.; DAZHU, C. PbS/epoxy resin nanocomposite prepared by a novel method. Materials. Letters, v. 58, p. 176-178, 2004. PEDRO, S. S., 2011, Propriedades ópticas, magnéticas e estruturais de monocristais Cs2NaAlF6 dopados com cromo trivalente, Tese de Doutorado, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil. Programa Spectrum simulator. Disponível em: <Http://wwwchem.uwimona.edu.jm/courses/Tanabe-Sugano/TanSug>. Acesso em: 07 jul.2016. PULIZZI, F. Spintronics. Nature Materials, v. 11(15), p. 367, 2012. QIAO, B.; RUDA, H. E.; WANG, J. Multiqubit computing and error-avoiding codes in subspace using quantum dots. Journal of Applied Physics, v. 91, p. 2524-2529, 2002. QI, H.; HOU, X.; LI, Y.; SUN, Y.; ZHANG, H.; WANG, J. Co2+: LaMgAl11O19 saturable absorber Q-switch for a flash lamp pumped 1.54 μm Er: glass laser. Opt. Express, v.15 (6), 3195-3200, 2007. RASBAND, W. S. Image J, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2016. RATH, A. K.; BERNECHEA, M.; MARTINEZ, L.; KONSTANTATOS, G. SolutionProcessed Heterojunction Solar Cells Based on p-type PbS Quantum Dots and ntype Bi2S3 Nanocrystals. Advanced Materials, v. 23(32), p. 3712-3717, 2011. RAMANERY, F.; MANSUR, A.; MANSUR, H.; CARVALHO, S.; FONSECA, M. Biocompatible Fluorescent Core-Shell Nanoconjugates Based on Chitosan/Bi2S3 Quantum Dots. Nanoscale Research Letters, v.11(1), pp.1-12, 2016. ROMANO, R., 2007, Nanocompósitos e Nanoestruturas de Semicondutores das Famílias II-VI e IV-VI, Tese de Doutorado, Universidade Estadual de Campinas, Campinas-SP, Brasil. SAKURAI, J. J. Modern quantum mechanics. Los Angeles: Addison Wesley, 1994. SAMPAIO, J. A., 1997, Investigação de Vidros Aluminato de Cálcio Dopados com íons Terras-Raras, Dissertação de Mestrado, Universidade de Campinas, Campinas-SP, Brasil. SAPEGA, V. F.; MORENO, M.; RAMSTEINER, M.; DÄWERITZ, L. & Ploog, K. Electronic structure of Mn ions in (Ga,Mn)As diluted magnetic semiconductor. Phys. Rev. B, v. 66, p. 075217, 2002. SELVAKUMAR, M.; BHAT, D. K. Microwave synthesized nanostructured TiO.sub.2- activated carbon composite electrodes for supercapacitor. Applied Surface Science, v.263, p.236, 2012. SERQUEIRA, E. O., 2010, Estudo de Parâmetros Espectroscópicos de Íons de Nd3+ no Sistema Vítreo SNAB (SiO2 – Na2CO3 – Al2O3 – B2O3) Nanoestruturado com Nanocristais de CdS, Tese de Doutorado, Universidade Federal de Uberlândia, Uberlândia-MG, Brasil. SHALÍMOVA, K. V. Física de los semiconductores. Moscú. Mir, 1975. SHARPE, A. G. Química inorgánica. Barcelona. Reverte, 1996. SHELBY, J. E. Introduction to Glass Science and Technology: 2.ed. New York: Royal Society of Chemistry, 2005. SHRIVER, D. F.; ATKINS, P. W. Química Inorgânica: 4. ed. Porto Alegre: Bookman, 2008. SILVA, A. S., 2012, Crescimento, Caracterizações e Estudo de Nanocristais de ZnTe e Zn1-xMnxTe em Matrizes Vítreas, Dissertação de Mestrado, Universidade Federal de Uberlândia, Uberlândia-MG, Brasil. SILVA, A. S., 2015, Estudo de Propriedades Físicas de Nanocristais de ZnTe e Zn1-xAxTe (A = Mn; Co) no Sistema Vítreo P2O5 – ZnO – Al2O3 – BaO – PbO, Tese de Doutorado, Universidade Federal de Uberlândia, Uberlândia-MG, Brasil. SILVA, R. S., BAFFA, F. O.; LOURENÇO, S. A.; CHEN, F.; DANTAS, N. O. Luminescence in semimagnetic Pb1−xMnxSe quantum dots grown in a glass host: Radiative and nonradiative emission processes. Chemical Physics Letters, v. 567, p. 23-26, 2013. SILVA, R. S.; FREITAS NETO, E. S.; DANTAS, N. O. Optical, Magnetic, and Structural Properties of Semiconductor and Semimagnetic Nanocrystals. In: Dr. Sudheer Neralla. (Org.). Nanocrystals - Synthesis, Characterization and Applications. 26 ed. Croácia: InTech, 2012. v. 3, p. 61-80. SILVA, R. S.; MIKHAIL, H. D.; PAVANI, R.; CANO, N. F.; SILVA, A. C. A.; DANTAS, N. O. Synthesis of diluted magnetic semiconductor Bi2−xMnxTe3 nanocrystals in a host glass matrix. Journal of Alloys and Compounds, v. 648, p. 778-782, 2015. SILVA, R. S.; MORAIS, P. C.; QU, F.; ALCALDE, A. M.; DANTAS, N. O.; SULLASI, H. S. L. Synthesis process controlled magnetic properties of Pb1−xMnxS nanocrystals. Applied Physics Letters, v. 90(25), p. 253114-1− 253114-3, 2007. SILVA, R. S.; SILVA, J. T. T.; ROCHA, V. R.; CANO, N. F., SILVA, A. C.; DANTAS, N. O. Synthesis Process Controlled of Semimagnetic Bi2–xMnxS3 Nanocrystals in a Host Glass Matrix. The Journal of Physical Chemistry C, v.118 (32), p. 18730– 18735, 2014. SILVA, R. S., 2008, Síntese e Estudo das Propriedades Ópticas e Magnéticas de Pontos Quânticos de Pb1-xMnxS Crescidos em Matrizes Vítreas, Tese de Doutorado, Universidade de Brasília, Brasília-DF, Brasil. SINGH, S.; FITZSIMMONS, M. R.; JEEN, H.; BISWAS, A.;HAWLEY, M. E. Temperature dependence of nanometer-size metallic phase texture and its correlation with bulk magnetic and transport properties and defects of a (La0.4Pr0.6)0.67Ca0.33MnO3 film. Appl. Phys. Lett., v. 101(2), 2012. SMART, L. E.; MOORE, E. A. SOLID STATE CHEMISTRY, An Introduction: 3. ed. New York: Taylor & Francis Group, 2005. SOUTO, E. S., 2006, Propriedades de Spintrônica do Gás de Elétrons e Dinâmica do Íon Mn em Nano Estruturas Semicondutoras Magnéticas, Tese Doutorado, Universidade de Brasília, Brasília-DF, Brasil. SUZDAL, N. V.; PROKHORENKO, O. A.; KHALILEV, V. D. Absorption spectra of cobalt-tinted alkaliborate glasses. Glass and Ceramics, v. 60(3), p. 71-74, 2003. TANABE, Y.; SUGANO, S. On the Absorption Spectra of Complex Ions. I. Journal of the Physical Society of Japan, v. 9, n. 5, p. 753-765, 1954. TANABE, Y.; SUGANO, S. On the Absorption Spectra of Complex Ions. II. Journal of the Physical Society of Japan, v. 9, n. 5, p. 766-779, 1954. TARACHAND; SHARMA, V.; BHATT, R.; GANESAN, V.; OKRAM, G. S. A catalystfree new polyol method synthesized hot-pressed Cu doped Bi2S3 nanorods and their thermoelectric properties. Nano Research, v. 9 (11), p. 3291-3304, 2016. TERCZYŃSKA-MADEJ, A.; CHOLEWA-KOWALSKA, K.; LACZKA, M. Coordination and valence state of transition metal ions in alkali-borate glasses. Optical Materials, v. 33(12), p. 1984-1988, 2011. THE ROYAL SOCIETY & THE ROYALl ACADEMY OF ENGINEERING. Nanoscience and nanotechnologies, July 2004. TOMCZAK, N.; GOH, K. E. J. (EDS.). Scanning Probe Microscopy. Singapore: World Scientific Publishing Co. Pte. Ltd., 2011. TORRES, F. J.; RODRIGUEZ-MENDOZA, U. R.; LAVIN, V.; DE SOLA, E. R.; ALARCON, J. Evolution of the structural and optical properties from cobalt cordierite glass to glass-ceramic based on spinel crystalline phase materials. Journal of NonCrystalline Solids, v. 353 (44-46), p. 4093-4101, 2007. VARSHNEYA, A.K. Fundamentals of inorganic glasses. San Diego: Academic Press, 1994. VAZ, C. A. F.; MOUTAFIS, C.; QUITMANN, C.; RAABE, J. Luminescence-based magnetic imaging with scanning x-ray transmission microscopy. Appl. Phys. Lett., v. 101, p. 083114, 2012. VLASKIN, V. A.; BARROWS, C. J.; ERICKSON, C. S.; GAMELIN, D. R. Nanocrystal Diffusion Doping. Journal of the American Chemical Society, v. 135, p. 14380− 14389, 2013. Wikimedia Commons. Disponível em: <https://commons.wikimedia.org/wiki/File:DOS_multdim.jpg?uselang=pt-br >. Acesso em: 07 jul.2016. WILAMOWSKI, Z.; WERPACHOWSKA, A. Spintronics in semiconductors. Materials Science-Poland, V. 24, No. 3, 2006. WILLIAMS, D. B.; CARTER, C. B. Transmission Electron Microscopy: 2 ed. New York: Springer, 2009. WISE, F. W. Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. V. 33, p. 773-780, 2000. WISE, F. OE Magazine, p.24, October 2002. WOGGON, U. Optical Properties of Semicondutor Quantum Dots: 1. ed. Berlim: Springer, 1996.. WOJNAR, P.; JANIK, E.; BACZEWSKI, L. T.; KRET, S.; DYNOWSKA, E.; WOJCIECHOWSKI, T.; SUFFCZYNSKI, J.; PAPIERSKA, J.; KOSSACKI, P.; KARCZEWSKI, G.; KOSSUT, J.; WOJTOWICZ, T. Giant Spin Splitting in Optically Active ZnMnTe/ZnMgTe Core/Shell Nanowires. Nano Lett, v.12, p. 3404-3409, 2012. WOLF, S. A.; AWSCHALOM, D. D.; BUHRMAN, R. A.; DAUGHTON, J. M.; VON MOLNÁR, S.; ROUKES, M. L.; CHTCHELKANOVA, A. Y.; TREGER, D. M. Spintronics: a spin-based electronics vision for the future. Science, v.294, p. 1488- 1495, 2001. WOLF, S. A.; CHTCHELKANOVA, A. Y.; TREGER, D. M. "Spintronics-A retrospective and perspective". IBM Journal of Research and Development, v. 5, p. 101-110, 2006. WOLF, S. A.; TREGER, D. Spintronics: a new paradigm for electronics for the new millennium. IEEE Transactions on Magnetics, v. 36, p. 2748-2751, 2000. WULFSBERG, G. Inorganic Chemistry. California: University Science Books, 2000. XIN, F.; ZHAO, S.; HUANG, L.; DENG, D.; JIA, G.; WANG, H.; XU, S. Up-conversion luminescence of Er3+-doped glass ceramics containing β-NaGdF4 nanocrystals for silicon solar cells. Materials Letters, v. 78, p. 75-77, 2012. YAO, B.; WANG, P.; WANG, S.; ZHANG, M. Ce doping influence on the magnetic phase transition in In2S3:Ce nanoparticles. Cryst. Eng. Comm, v. 16, p. 2584-2588, 2014. YOFFE, A. D. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Advances in Physics, v. 42, p. 173-262, 1993. YUKALOV, V. I.; HENNER, V. K.; BELOZEROVA, T. S.; YUKALOVA, E. P. Spintronics with magnetic nanomolecules and graphene flakes. Journal of Superconductivity and Novel Magnetism, v. 29(3), p. 721-726, 2016. ZACHARIASEN, W. H. THE ATOMIC ARRANGEMENT IN GLASS. J. Am. Chem. Soc., v. 54(10), p. 3841-3851, 1932. ZARZYCKI, J. Glasses and the Vitreous State: 1.ed. New York: Cambridge University Press, 1991. ZHANG, J. J.; YU, P.; CHEN, S.Y.; LI, Y.L.; ZHU, J.G.; XIAO, D.Q. Doping-induced emission of infrared light from Co2+ doped ZnSe quantum dots. Research on Chemical Intermediates, v. 37 (2-5), p. 383-388, 2011. ZUTIC, I.; Petukhov, A. Spintronics: Shedding light on nanomagnets. Nat. Nanotechnol, v.4, p. 623-625, 2009.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências Exatas, Naturais e Educação - ICENE
Brasil
UFTM
Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais
publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências Exatas, Naturais e Educação - ICENE
Brasil
UFTM
Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFTM
instname:Universidade Federal do Triangulo Mineiro (UFTM)
instacron:UFTM
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
instacron_str UFTM
institution UFTM
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
collection Biblioteca Digital de Teses e Dissertações da UFTM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)
repository.mail.fl_str_mv bdtd@uftm.edu.br||bdtd@uftm.edu.br
_version_ 1797221125857476608