Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_baf86c1db55a372ecad25fbd17bae738
oai_identifier_str oai:bdtd.uftm.edu.br:tede/1059
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling O efeito da benfotiamina sobre enzimas alvo do ciclo de Krebs em cultura de células da linhagem 4T1In vitro.Tiamina.Morte celular.Câncer de mama.In vitro.Thiamine.Cell death.Breast cancer.Ciências da SaúdeIntrodução: O metabolismo energético é uma das principais diferenças entre as células tumorais e normais, sendo que as células tumorais produzem energia preferencialmente pela glicólise anaeróbica em detrimento da fosforilação oxidativa mitocondrial. Dentre as enzimas do metabolismo glicolítico, o complexo da piruvato desidrogenase, que está localizado na mitocôndria, requer alguns cofatores para catalisar a conversão de piruvato à acetil-coA. Um dos cofatores é a vitamina B1 que também é conhecida como tiamina. A benfotiamina é um análogo sintético da tiamina, possuindo uma biodisponibilidade superior. Objetivo: Investigar a influência da tiamina por meio de sua pro-forma, i.e., a benfotiamina sobre o metabolismo energético das células tumorais e a morte celular programada em células de câncer mamário da linhagem 4T1. Materiais e Métodos: Para tanto, foram utilizadas células da linhagem 4T1 as quais são provenientes de câncer de mama de camundongo. Foram formados três grupos conforme a concentração de benfotiamina utilizada no meio de cultura, i.e., Controle, Benfo50 (benfotiamina 50µmol/L) e Benfo100 (benfotiamina 100µmol/L). Cada grupo foi realizado em triplicatas e mantidos por 24 ou 72 horas exposto a benfotiamina (exceto o controle). Resultados: A concentração de lactato foi menor nos grupos com exposição a benfotiamina (24h e 72h). Os resultados de citometria demostraram uma redução no número de células vivas nos grupos Bf50 e Bf100 comparados com o controle nos dois tempos. Maior número de células em apoptose inicial nos grupos expostos a benfotiamina durante 24 horas comparados com o controle, e de apoptose tardia nos dois nos grupos expostos a benfotiamina (24h e 72h) em todas as comparações. O número de células em necrose foi menor nos grupos que ficaram por um período de 24 horas do que o controle, mas a comparação entre Bf50, Bf100 e os tempos mostrou um maior percentual de células em necrose no período de 72 horas. O grupo Bf100 24h apresentou-se maior significativamente que o Bf100 72h em relação a tiamina. A comparação do grupo C 72h da TDP foi menor que o mesmo grupo em 24 horas. A comparação da razão de TMP/TDP apresentou-se maior no grupo C 72 horas do que o grupo C 24h.Conclusão: A exposição de uma linhagem celular de câncer a benfotiamina potencializa a via do complexo enzimático piruvato desidrogenase. Além disso, influencia na morte celular por apoptose e diminui o número de células em necrose no período de 24 horas. Novos estudos são válidos, posto a escassez de trabalhos na área, para avaliar os mecanismos desse análogo in vitro dentro da célula possibilitando o início do avanço de terapias especificas para um tipo de câncer de mama agressivo.Introduction: The energetic metabolism is one of the major differences between tumor and normal cells, of which tumor cells produce energy by anaerobic glycolysis preferably at the expense of mitochondrial oxidative phosphorylation Among the enzymes of the glycolytic metabolismo, the pyruvate dehydrogenase complex, which is located in the mitochondria, requires some cofactors to catalyze the conversion of pyruvate to acetyl-CoA. One of the cofactors is vitamin B1 which is also known as thiamine . Benfotiamine is a synthetic analogue of thiamine, having superior bioavailability. Objective: To investigate the influence of thiamine through its pro-forma, ie, benfotiamine on the energetic metabolism of tumor cells and programmed cell death in breast cancer cells of the 4T1 lineage. Materials and Methods: For this purpose, cells from the 4T1 lineage, which come from mouse breast cancer, were used. Three groups were formed according to the concentration of benfotiamine used in the culture medium, ie , Control, Benfo50 (benfotiamine 50µmol/L) and Benfo100 (benfotiamine 100µmol/L). Each group was performed in triplicate and kept for 24 or 72 hours exposed to benfotiamine (except the control). Results: The lactate concentration was lower in the groups exposed to benfotiamine (24h and 72h). Cytometry results showed a reduction in the number of living cells in the Bf50 and Bf100 groups compared to the control at both times. Greater number of cells in early apoptosis in the groups exposed to benfotiamine for 24 hours compared to the control, and in late apoptosis in both groups exposed to benfotiamine (24h and 72h) in all comparisons. The number of cells in necrosis was lower in the groups that stayed for a period of 24 hours than in the control, but the comparison between Bf50, Bf100 and the times showed a higher percentage of cells in necrosis in the period of 72 hours. The 24h Bf100 group was significantly higher than the 72h Bf100 in relation to thiamine. The comparison of group C 72h of TDP was less than the same group in 24 hours. The comparison of the TMP/TDP ratio was higher in the 72-hour C group than in the 24-hour C group.Conclusion: The exposure of a cancer cell line to benfotiamine potentiates the pathway of the pyruvate dehydrogenase enzymatic complex. Furthermore, it influences on cell death by apoptosis and decreases the number of cells undergoing necrosis within 24 hours. New studies are valid, given the scarcity of works in the area, to assess the mechanisms of this analogue in vitro inside the cell, enabling the beginning of the advance of specific therapies for an aggressive type of breast cancer.Universidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Programa de Pós-Graduação em Ciências da SaúdeBrasilUFTMPrograma de Pós-Graduação em Ciências da SaúdePORTARI, Guilherme Vannucchi26157082879http://lattes.cnpq.br/6076945534196087LEÃO, Renata Campos2021-12-15T16:32:35Z2021-08-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfLEÃO, Renata Campos. O efeito da benfotiamina sobre enzimas alvo do ciclo de Krebs em cultura de células da linhagem 4T1. 2021. 65f. Tese (Doutorado em Ciências da Saúde) - Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, 2021.http://bdtd.uftm.edu.br/handle/tede/1059porALVES, L. A.; BIESEK, S.; GUERRA, I. Estratégias de nutrição e suplementação no esporte. São Paulo, 2005. BALDASSARRE, G.; BELLETTI, B. Molecular biology of breast tumors and prognosis. F1000Research, v. 5, 2016. BAST JR, R. C.; HOLLAND, J. F.; III, E. F. Holland-Frei cancer medicine 8. [s.l.] PMPH-USA, 2010. v. 8 BELTRAMO, E. et al. Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose. Diabetes/metabolism research and reviews, v. 20, n. 4, p. 330– 336, 2004a. BELTRAMO, E. et al. Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose. Diabetes/Metabolism Research and Reviews, v. 20, n. 4, p. 330– 336, jul. 2004b. BELTRAMO, E. et al. Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol, p. 11, 2008a. BELTRAMO, E. et al. Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta diabetologica, v. 45, n. 3, p. 131, 2008b. BETTENDORFF, L. The compartmentation of phosphorylated thiamine derivatives in cultured neuroblastoma cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, v. 1222, n. 1, p. 7–14, maio 1994. BÖCKER, W. et al. Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Laboratory Investigation, v. 82, n. 6, p. 737–746, 2002. BOHM, I. Apoptosis: The Complex Scenario for a Silent Cell Death. Molecular Imaging & Biology, v. 5, n. 1, p. 2–14, jan. 2003. BOLAÑOS, J. P. et al. Regulation of glycolysis and pentose–phosphate pathway by nitric oxide: Impact on neuronal survival. Biochimica et Biophysica Acta (BBA)-Bioenergetics, v. 1777, n. 7–8, p. 789– 793, 2008. BOLAÑOS, J. P. et al. Regulation of glycolysis and pentose–phosphate pathway by nitric oxide: Impact on neuronal survival. Biochimica et Biophysica Acta, p. 5, [s.d.]. CALLAGY, G. et al. Molecular classification of breast carcinomas using tissue microarrays. Diagnostic Molecular Pathology, v. 12, n. 1, p. 27–34, 2003. CANÁRIO, A. C. G. et al. Physical activity, fatigue and quality of life in breast cancer patients. Revista da Associação Médica Brasileira, v. 62, n. 1, p. 38–44, 2016. CANCARINI, I. et al. Micronutrients Involved in One-Carbon Metabolism and Risk of Breast Cancer Subtypes. PLOS ONE, v. 10, n. 9, p. e0138318, 16 set. 2015. CHOI, S.-K.; BAEK, S.-H.; CHOI, S.-W. The effects of endurance training and thiamine supplementation on anti-fatigue during exercise. Journal of exercise nutrition & biochemistry, v. 17, n. 4, p. 189, 2013. COHEN, J. J. Programmed cell death in the immune system. Advances in immunology, v. 50, p. 55– 85, 1991. COMÍN-ANDUIX, B. et al. The effect of thiamine supplementation on tumour proliferation. European Journal of Biochemistry, v. 268, n. 15, p. 4177–4182, 2001. COOPER, G. M.; HAUSMAN, R. E. The cell. [s.l.] Sinauer Associates Sunderland, 2000. v. 85 DE VISSER, K. E.; EICHTEN, A.; COUSSENS, L. M. Paradoxical roles of the immune system during cancer development. Nature reviews cancer, v. 6, n. 1, p. 24–37, 2006. DESANTIS, C. E. et al. International variation in female breast cancer incidence and mortality rates. Cancer Epidemiology and Prevention Biomarkers, v. 24, n. 10, p. 1495–1506, 2015. DEXTER, D. L. et al. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer research, v. 38, n. 10, p. 3174–3181, 1978. GALLUZZI, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, v. 25, n. 3, p. 486–541, 2018a. GALLUZZI, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, v. 25, n. 3, p. 486–541, 2018b. GHONCHEH, M.; SOLTANI, S.; SALEHINIYA, H. Disparities in Incidence and Mortality of Breast Cancer. Iranian journal of public health, v. 45, n. 2, p. 270–271, 2016. GRIFFITHS, J. Causes and consequences of hypoxia and acidity in tumour microenvironments. Bioessays, v. 23, n. 3, p. 295–296, 2001. HAMMES, H.-P. et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nature Medicine, v. 9, n. 3, p. 294–299, mar. 2003. HANAHAN, D.; WEINBERG, R. A. The hallmarks of cancer. cell, v. 100, n. 1, p. 57–70, 2000. HONG, W. K. Holland-Frei Cancer Medicine 8. [s.l.] PMPH-USA, 2010. v. 8 HOTCHKISS, R. S. et al. Cell death. New England Journal of Medicine, v. 361, n. 16, p. 1570–1583, 2009. (INCA), I.N.C.A. Câncer de Mama. , [s.d.]. Disponível em: <http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/mama/cancer_mama>. Acesso em: 9 jan. 2018 INSUA-RODRÍGUEZ, J.; OSKARSSON, T. The extracellular matrix in breast cancer. Advanced drug delivery reviews, v. 97, p. 41–55, 2016a. INSUA-RODRÍGUEZ, J.; OSKARSSON, T. The extracellular matrix in breast cancer. Advanced drug delivery reviews, v. 97, p. 41–55, 2016b. JEMAL, A. et al. CA: a cancer journal for clinicians. Cancer statistics, v. 60, n. 5, p. 277–300, 2010.63 JONUS, H. C. et al. Thiamine mimetics sulbutiamine and benfotiamine as a nutraceutical approach to anticancer therapy. Biomedicine & Pharmacotherapy, v. 121, p. 109648, jan. 2020. KERR, J. F. R.; WYLLIE, A. H.; CURRIE, A. R. Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics. British Journal of Cancer, v. 26, n. 4, p. 239–257, ago. 1972a. KERR, J. F.; WYLLIE, A. H.; CURRIE, A. R. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. British journal of cancer, v. 26, n. 4, p. 239–257, 1972b. LI, Y. et al. Small-sized polymeric micelles incorporating docetaxel suppress distant metastases in the clinically-relevant 4T1 mouse breast cancer model. BMC Cancer, v. 14, n. 1, p. 329, 10 maio 2014a. LI, Y. et al. Small-sized polymeric micelles incorporating docetaxel suppress distant metastases in the clinically-relevant 4T1 mouse breast cancer model. BMC Cancer, v. 14, n. 1, dez. 2014b. LINDEN, R. Programmed cell deaths. Apoptosis and alternative deathstyles. European Journal of Biochemistry, v. 271, n. 9, p. 1638–1650, 2004. LOCKSHIN, R. A.; WILLIAMS, C. M. Programmed cell death—I. Cytology of degeneration in the intersegmental muscles of the Pernyi silkmoth. Journal of insect physiology, v. 11, n. 2, p. 123–133, 1965. LONSDALE, D. et al. The potential of lipid soluble thiamine in the treatment of cancer. AIMS Biophysics, v. 7, n. 1, p. 17–26, 2020. LU, J.; TAN, M.; CAI, Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer letters, v. 356, n. 2, p. 156–164, 2015a. LU, J.; TAN, M.; CAI, Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer letters, v. 356, n. 2, p. 156–164, 2015b. LƯƠNG, K. V. Q.; NGUYỄN, L. T. H. The Role of Thiamine in Cancer: Possible Genetic and Cellular Signaling Mechanisms. CANCER GENOMICS, p. 17, 2013. MACHEDA, M. L.; ROGERS, S.; BEST, J. D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. Journal of cellular physiology, v. 202, n. 3, p. 654–662, 2005a. MACHEDA, M. L.; ROGERS, S.; BEST, J. D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. Journal of Cellular Physiology, v. 202, n. 3, p. 654–662, mar. 2005b. MENDES, T. F. S.; KLUSKENS, L. D.; RODRIGUES, L. R. Triple Negative Breast Cancer: Nanosolutions for a Big Challenge. Advanced Science, v. 2, n. 11, p. 1500053, nov. 2015. MORENO‐SÁNCHEZ, R. et al. Energy metabolism in tumor cells. The FEBS journal, v. 274, n. 6, p. 1393–1418, 2007. OLIVER, L.; VALLETTE, F. M. The role of caspases in cell death and differentiation. Drug Resistance Updates, v. 8, n. 3, p. 163–170, jun. 2005. PÁCAL, L.; KURICOVÁ, K.; KAŇKOVÁ, K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco-and lipotoxicity by rational supplementation? World journal of diabetes, v. 5, n. 3, p. 288, 2014. PADOVANI, R. M. et al. Dietary reference intakes: aplicabilidade das tabelas em estudos nutricionais. Revista de Nutrição, 2006. PATEL, M. S.; KOROTCHKINA, L. G. The biochemistry of the pyruvate dehydrogenase complex. Biochemistry and Molecular Biology Education, v. 31, n. 1, p. 5–15, 2003. PEIN, M.; OSKARSSON, T. Microenvironment in metastasis: roadblocks and supportive niches. American Journal of Physiology-Cell Physiology, v. 309, n. 10, p. C627–C638, 2015. PEROU, C. M. et al. Molecular portraits of human breast tumours. Nature, v. 406, n. 6797, p. 747– 752, 2000. POMERO, F. et al. Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose. Acta diabetologica, v. 38, n. 3, p. 135–138, 2001a. POMERO, F. et al. Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose. Acta Diabetologica, v. 38, n. 3, p. 135–138, 1 set. 2001b. PORTARI, G. V. Liver, plasma and erythrocyte levels of thiamine and its phosphate esters in rats with acute ethanol intoxication: A comparison of thiamine and benfotiamine administration. European Journal of Pharmaceutical Sciences, p. 4, 2013. PORTARI, G. V.; VANNUCCHI, H.; JORDAO JR, A. A. Liver, plasma and erythrocyte levels of thiamine and its phosphate esters in rats with acute ethanol intoxication: A comparison of thiamine and benfotiamine administration. European Journal of Pharmaceutical Sciences, v. 48, n. 4–5, p. 799– 802, 2013. PULASKI, B. A.; OSTRAND‐ROSENBERG, S. Mouse 4T1 breast tumor model. Current protocols in immunology, v. 39, n. 1, p. 20–2, 2000. PULASKI, B. A.; OSTRAND-ROSENBERG, S. Mouse 4T1 Breast Tumor Model. In: COLIGAN, J. E. et al. (Eds.). . Current Protocols in Immunology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2001. RARDIN, M. J. et al. Monitoring phosphorylation of the pyruvate dehydrogenase complex. Analytical biochemistry, v. 389, n. 2, p. 157–164, 2009. SÁNCHEZ-RAMÍREZ, G. M. et al. Benfotiamine relieves inflammatory and neuropathic pain in rats. European Journal of Pharmacology, p. 6, 2006. SAYERS, K. T. et al. Increased Secretory Leukocyte Protease Inhibitor (SLPI) Production by Highly Metastatic Mouse Breast Cancer Cells. PLoS ONE, v. 9, n. 8, p. e104223, 11 ago. 2014. SENCHUKOVA, M. A. et al. Different types of tumor vessels in breast cancer: morphology and clinical value. SpringerPlus, v. 4, n. 1, p. 512, 2015. SHOEB, M.; RAMANA, K. V. Anti-Inflammatory Effects of Benfotiamine are Mediated Through the Regulation of Arachidonic Acid Pathway in Macrophages. Free radical biology & medicine, v. 52, n. 1, p. 182–190, 1 jan. 2012. SMITH, R. A. et al. American Cancer Society guidelines for breast cancer screening: update 2003. CA: a cancer journal for clinicians, v. 53, n. 3, p. 141–169, 2003. SØRLIE, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences, v. 98, n. 19, p. 10869–10874, 2001. SØRLIE, T. Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. European journal of cancer, v. 40, n. 18, p. 2667–2675, 2004. The effect of thiamine supplementation on tumour proliferation. p. 6, 2001. TORRE, L. A. et al. Global cancer statistics, 2012. CA: a cancer journal for clinicians, v. 65, n. 2, p. 87– 108, 2015. TOWER, J. Programmed cell death in aging. Ageing research reviews, v. 23, p. 90–100, 2015. VANDER HEIDEN, M. G. Targeting cancer metabolism: a therapeutic window opens. Nature reviews Drug discovery, v. 10, n. 9, p. 671–684, 2011a. VANDER HEIDEN, M. G. Targeting cancer metabolism: a therapeutic window opens. Nature Reviews Drug Discovery, v. 10, p. 671, 31 ago. 2011b. VERMES, I. et al. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of Immunological Methods, v. 184, n. 1, p. 39–51, jul. 1995. WARBURG, O. On the origin of cancer cells. Science, v. 123, n. 3191, p. 309–314, 1956a. WARBURG, O. On the origin of cancer cells. Science, v. 123, n. 3191, p. 309–314, 1956b. WHO | Breast cancer. Disponível em: <https://www.who.int/cancer/prevention/diagnosisscreening/breast-cancer/en/>. Acesso em: 12 mar. 2020. YEO, S. K.; GUAN, J.-L. Breast cancer: multiple subtypes within a tumor? Trends in cancer, v. 3, n. 11, p. 753–760, 2017. YOSHIMURA, T. et al. Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4T1 murine breast cancer cells. PloS one, v. 8, n. 3, p. e58791, 2013a. YOSHIMURA, T. et al. Monocyte Chemoattractant Protein-1/CCL2 Produced by Stromal Cells Promotes Lung Metastasis of 4T1 Murine Breast Cancer Cells. PLoS ONE, v. 8, n. 3, p. e58791, 18 mar. 2013b.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2021-12-16T04:00:08Zoai:bdtd.uftm.edu.br:tede/1059Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:58:46.314380Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186155237736448