A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura

Detalhes bibliográficos
Autor(a) principal: VILAÇA, Alexandre
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
Texto Completo: http://bdtd.uftm.edu.br/handle/tede/877
Resumo: Uma alta temperatura ambiente possui efeito deletério sobre o desempenho atlético, principalmente na realização de exercícios prolongados. Várias estratégias têm sido estudadas no intuito de atenuar o declínio no desempenho, entre eles a utilização do mentol. Contudo, as evidências sobre os efeitos do mentol sobre o desempenho em diferentes temperaturas ainda são escassas. O objetivo do presente estudo foi avaliar os efeitos do enxágue bucal de mentol sobre o desempenho e aspectos psicofisiológicos durante um teste contrarrelógio de 10 km em diferentes faixas de temperatura. Neste sentido, oito homens saudáveis (34 ± 4 anos; 173,0 ± 0,05 cm; 72,0 ± 7,5 kg; VO2max 64,5 ± 5,5 ml/kg/min percentual de gordura corporal 12,0 ± 4,1%) realizaram um ensaio de familiarização e sete ensaios experimentais, três na temperatura de 22°C (CON, PLA, MEN), dois na temperatura 28°C (PLA, MEN) e dois na temperatura de 34°C (PLA, MEN). A temperatura e o tipo de tratamento (PLA, MEN, CON) foram escolhidos randomicamente. Todas as medidas psicofisiológicas (sensação térmica, conforto térmico, percepção subjetiva de esforço e resposta afetiva) foram obtidas a cada km completado. Não foi encontrada diferença significativa no tempo final de teste entre os tratamentos CON (42,4 ± 1,53 min), PLA (43,3 ± 0,9 min), MEN (42,7 ± 2,4 min) na temperatura de 22°C. Nas temperaturas de 28°C e 34°C, também não foi observada diferença estatística no tempo final de prova, apesar da média final de corrida ter sido 54s (28°C) e 36s (34°C) menor na utilização do MEN. Todas as medidas psicofisiológicas se alteraram em relação ao tempo de corrida, porém o MEN não foi capaz de modular nenhuma dessas medidas. O estudo não demonstra melhora de desempenho atribuído à aplicação do enxágue bucal de mentol durante um teste contrarrelógio de 10 km em esteira rolante nas diferentes temperaturas testadas. Desse modo, permanece incerto se alterações nos processos psicofisiológicos são capazes de aumentar o desempenho em ambientes quentes.
id UFTM_cf5e686c426f280368462155fa60569b
oai_identifier_str oai:bdtd.uftm.edu.br:tede/877
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
spelling A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperaturaMentol.Psicofisiologia.Desempenho atlético.Menthol.Psychophysiology.Athletic performance.Educação FísicaUma alta temperatura ambiente possui efeito deletério sobre o desempenho atlético, principalmente na realização de exercícios prolongados. Várias estratégias têm sido estudadas no intuito de atenuar o declínio no desempenho, entre eles a utilização do mentol. Contudo, as evidências sobre os efeitos do mentol sobre o desempenho em diferentes temperaturas ainda são escassas. O objetivo do presente estudo foi avaliar os efeitos do enxágue bucal de mentol sobre o desempenho e aspectos psicofisiológicos durante um teste contrarrelógio de 10 km em diferentes faixas de temperatura. Neste sentido, oito homens saudáveis (34 ± 4 anos; 173,0 ± 0,05 cm; 72,0 ± 7,5 kg; VO2max 64,5 ± 5,5 ml/kg/min percentual de gordura corporal 12,0 ± 4,1%) realizaram um ensaio de familiarização e sete ensaios experimentais, três na temperatura de 22°C (CON, PLA, MEN), dois na temperatura 28°C (PLA, MEN) e dois na temperatura de 34°C (PLA, MEN). A temperatura e o tipo de tratamento (PLA, MEN, CON) foram escolhidos randomicamente. Todas as medidas psicofisiológicas (sensação térmica, conforto térmico, percepção subjetiva de esforço e resposta afetiva) foram obtidas a cada km completado. Não foi encontrada diferença significativa no tempo final de teste entre os tratamentos CON (42,4 ± 1,53 min), PLA (43,3 ± 0,9 min), MEN (42,7 ± 2,4 min) na temperatura de 22°C. Nas temperaturas de 28°C e 34°C, também não foi observada diferença estatística no tempo final de prova, apesar da média final de corrida ter sido 54s (28°C) e 36s (34°C) menor na utilização do MEN. Todas as medidas psicofisiológicas se alteraram em relação ao tempo de corrida, porém o MEN não foi capaz de modular nenhuma dessas medidas. O estudo não demonstra melhora de desempenho atribuído à aplicação do enxágue bucal de mentol durante um teste contrarrelógio de 10 km em esteira rolante nas diferentes temperaturas testadas. Desse modo, permanece incerto se alterações nos processos psicofisiológicos são capazes de aumentar o desempenho em ambientes quentes.High ambient temperature has a deleterious effect on athletic performance, especially in the endurance exercises. Several strategies have been studied in order to mitigate the decline in performance, among them the use of menthol. However, evidence on the effects of menthol on performance at different temperatures is still scanty. The aim of this study was to evaluate the effects of menthol mouthwash on performance and psychophysiological aspects during a time trial test of 10 km in different temperature ranges. In this sense, eight healthy men (34 ± 4 years; 173.0 ± 0.05 cm; 72.0 ± 7.5 kg; VO2max = 64.5 ± 5.5 ml / kg / min and body fat percentage = 12.0 ± 4.1%), performed a familiarization test and seven experimental tests, three at a temperature of 22 ° C (CON, PLA, MEN), two at 28 ° C (PLA, MEN) and two at 34 ° C (PLA, MEN). The temperature and type of treatment (PLA, MEN, CON) were assigned randomly. All the psychophysiological measures (thermal sensation, thermal comfort, subjective perception of effort and affective response) were obtained at each kmof the test. No significant difference found in the final test time between CON (42.4 ± 1.53 min), PLA (43.3 ± 0.9 min), MEN (42.7 ± 2.4 min) in the temperature of 22 ° C. At 28 ° C and 34 ° C, we also did not observe statistical differences in the final test time, although the time to complete of the test was 54s (28 ° C) and 36s (34 ° C) lower in MEN. All the psychophysiological measures changed in relation to the running time, but MEN was not able to modulate any of these measures. The study did not show any performance improvement attributed to menthol mouthwash during a 10 km time triall test at the different temperatures tested. Thus, it remains uncertain whether changes in psychophysiological processes are capable of enhancing performance in hot environments.Universidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Curso de Graduação em Educação FísicaBrasilUFTMPrograma de Pós-Graduação em Educação FísicaSASAKI, Jeffer Eidi03999524951http://lattes.cnpq.br/9249864079237282VILAÇA, Alexandre2019-10-14T14:26:35Z2019-06-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfVILAÇA, Alexandre. A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura. 2019. 70f. Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2019.http://bdtd.uftm.edu.br/handle/tede/877porACEVEDO, E. O. et al. Percentual Responses Proximal to the Onset of Blood Lactate Accumulation. The Journal of Sports Medicine and Physical Fitness, v. 43, n. 3, p. 267– 273, set. 2003. ALLEN, P. D.; PANDOLF, K. B. Perceived Exertion Associated with Breathing Hyperoxic Mixtures during Submaximal Work. Medicine and science in sports, v. 9, n. 2, p. 122–127, 1977. ARMSTRONG, L. E.; MARESH, C. M. The Induction and Decay of Heat Acclimatisation in Trained Athletes. Sports Medicine (Auckland, N.Z.), v. 12, n. 5, p. 302–312, nov. 1991. ASTORINO, T. A. et al. Perceptual Changes in Response to Two Regimens of Interval Training in Sedentary Women. Journal of Strength and Conditioning Research, v. 30, n. 4, p. 1067–1076, abr. 2016. BARRADAS, V. L. Air Temperature and Humidity and Human Comfort Index of Some City Parks of Mexico City. International Journal of Biometeorology, v. 35, n. 1, p. 24–28, jun. 1991. BEEDIE, C. J. Placebo Effects in Competitive Sport: Qualitative Data. Journal of Sports Science & Medicine, v. 6, n. 1, p. 21–28, 1 mar. 2007. BEEDIE, C. J.; FOAD, A. J. The Placebo Effect in Sports Performance: A Brief Review. Sports Medicine (Auckland, N.Z.), v. 39, n. 4, p. 313–329, 2009. BEVAN, S.; ANDERSSON, D. A. TRP Channel Antagonists for Pain--Opportunities beyond TRPV1. Current Opinion in Investigational Drugs (London, England: 2000), v. 10, n. 7, p. 655–663, jul. 2009. BIANCO, A. C. Hormônios tireóideos, UCPs e termogênese. Arquivos Brasileiros de Endocrinologia &amp; Metabologia, v. 44, n. 4, p. 281–289, ago. 2000. BIXBY, W. R.; SPALDING, T. W.; HATFIELD, B. D. Temporal Dynamics and Dimensional Specificity of the Affective Response to Exercise of Varying Intensity: Differing Pathways to a Common Outcome. Journal of Sport and Exercise Psychology, v. 23, n. 3, p. 171–190, 1 set. 2001. BLACK, M. I. et al. Critical Power Derived from a 3-Min All-out Test Predicts 16.1-Km Road Time-Trial Performance. European Journal of Sport Science, v. 14, n. 3, p. 217–223, 2014. BLACK, M. I. et al. Self-Pacing Increases Critical Power and Improves Performance during Severe-Intensity Exercise. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, v. 40, n. 7, p. 662–670, jul. 2015. BONGERS, C. C. W. G. et al. Precooling and Percooling (Cooling during Exercise) Both Improve Performance in the Heat: A Meta-Analytical Review. Br J Sports Med, p. bjsports- 2013-092928, 19 abr. 2014. BONGERS, C. C. W. G.; HOPMAN, M. T. E.; EIJSVOGELS, T. M. H. Cooling Interventions for Athletes: An Overview of Effectiveness, Physiological Mechanisms, and Practical Considerations. Temperature (Austin, Tex.), v. 4, n. 1, p. 60–78, 2017. BORG, E. On Perceived Exertion and Its Measurement. 2007. Disponível em: <http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-6862>. Acesso em: 17 abr. 2019. BORG, G. Borg’s Perceived Exertion And Pain Scales. [s.l: s.n.] BORG, G. Escalas de Borg para a dor e o esforço: percebido. [s.l.] Manole, 2000. BORG, G. A. Psychophysical Bases of Perceived Exertion. Medicine and Science in Sports and Exercise, v. 14, n. 5, p. 377–381, 1982. BORG, G. A. V. Physical performance and perceived exertion. Oxford, England: Univer. Lund, 1962. BORG, G.; LINDERHOLM, H. Exercise Performance and Perceived Exertion in Patients with Coronary Insufficiency, Arterial Hypertension and Vasoregulatory Asthenia. Acta Medica Scandinavica, v. 187, n. 1–2, p. 17–26, fev. 1970. BORG, G.; LJUNGGREN, G.; CECI, R. The Increase of Perceived Exertion, Aches and Pain in the Legs, Heart Rate and Blood Lactate during Exercise on a Bicycle Ergometer. European Journal of Applied Physiology and Occupational Physiology, v. 54, n. 4, p. 343–349, 1985. BUGGY, D. J.; CROSSLEY, A. W. Thermoregulation, Mild Perioperative Hypothermia and Postanaesthetic Shivering. British Journal of Anaesthesia, v. 84, n. 5, p. 615–628, maio 2000. BUONO, M. J.; CABRALES, P. Hyperthermia during exercise – a double-edged sword. Temperature: Multidisciplinary Biomedical Journal, v. 3, n. 4, p. 512–513, 6 jul. 2016. CABANAC, M. Performance and Perception at Various Combinations of Treadmill Speed and Slope. Physiology & Behavior, v. 38, n. 6, p. 839–843, 1986. CAFARELLI, E. Peripheral Contributions to the Perception of Effort. Medicine and science in sports and exercise, v. 14, n. 5, p. 382–389, 1982. CALLARD, D. et al. Circadian Rhythms in Human Muscular Efficiency: Continuous Physical Exercise versus Continuous Rest. A Crossover Study. Chronobiology International, v. 17, n. 5, p. 693–704, set. 2000. CARPENTER, S. E.; LYNN, B. Vascular and Sensory Responses of Human Skin to Mild Injury after Topical Treatment with Capsaicin. British Journal of Pharmacology, v. 73, n. 3, p. 755–758, jul. 1981. CATAPAN, C. H. B. AFETOS POSITIVOS E NEGATIVOS DE UNIVERSITÁRIOS E SUAS EXPECTATIVAS FRENTE AO MERCADO DE TRABALHO. p. 59, [s.d.] CATERINA, M. J. Transient Receptor Potential Ion Channels as Participants in Thermosensation and Thermoregulation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, v. 292, n. 1, p. R64-76, jan. 2007. CATERINA, M. J.; JULIUS, D. The Vanilloid Receptor: A Molecular Gateway to the Pain Pathway. Annual Review of Neuroscience, v. 24, p. 487–517, 2001. CHEUVRONT, S. N. et al. Mechanisms of Aerobic Performance Impairment with Heat Stress and Dehydration. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 109, n. 6, p. 1989–1995, dez. 2010. CLARK, V. R. et al. Placebo Effect of Carbohydrate Feedings during a 40-Km Cycling Time Trial. Medicine and Science in Sports and Exercise, v. 32, n. 9, p. 1642–1647, set. 2000. CRANDALL, C. G.; GONZÁLEZ-ALONSO, J. Cardiovascular function in the heat-stressed human. Acta physiologica (Oxford, England), v. 199, n. 4, p. 407–423, ago. 2010. CREWE, H.; TUCKER, R.; NOAKES, T. D. The Rate of Increase in Rating of Perceived Exertion Predicts the Duration of Exercise to Fatigue at a Fixed Power Output in Different Environmental Conditions. European Journal of Applied Physiology, v. 103, n. 5, p. 569– 577, jul. 2008. CUDDY, J. S.; HAILES, W. S.; RUBY, B. C. A Reduced Core to Skin Temperature Gradient, Not a Critical Core Temperature, Affects Aerobic Capacity in the Heat. Journal of Thermal Biology, v. 43, p. 7–12, jul. 2014. DAVIES, R. C.; ROWLANDS, A. V.; ESTON, R. G. Effect of Exercise-Induced Muscle Damage on Ventilatory and Perceived Exertion Responses to Moderate and Severe Intensity Cycle Exercise. European Journal of Applied Physiology, v. 107, n. 1, p. 11–19, set. 2009. ECCLES, R. Menthol and Related Cooling Compounds. The Journal of Pharmacy and Pharmacology, v. 46, n. 8, p. 618–630, ago. 1994. ECCLES, R. Role of Cold Receptors and Menthol in Thirst, the Drive to Breathe and Arousal. Appetite, v. 34, n. 1, p. 29–35, fev. 2000. ECCLES, R. Menthol: Effects on Nasal Sensation of Airflow and the Drive to Breathe. Current Allergy and Asthma Reports, v. 3, n. 3, p. 210–214, maio 2003. ECCLES, R.; JAWAD, M. S.; MORRIS, S. The Effects of Oral Administration of (-)- Menthol on Nasal Resistance to Airflow and Nasal Sensation of Airflow in Subjects Suffering from Nasal Congestion Associated with the Common Cold. The Journal of Pharmacy and Pharmacology, v. 42, n. 9, p. 652–654, set. 1990. EKKEKAKIS, P.; HALL, E. E.; PETRUZZELLO, S. J. Practical Markers of the Transition from Aerobic to Anaerobic Metabolism during Exercise: Rationale and a Case for AffectBased Exercise Prescription. Preventive Medicine, v. 38, n. 2, p. 149–159, fev. 2004. EKKEKAKIS, P.; HALL, E. E.; PETRUZZELLO, S. J. Variation and Homogeneity in Affective Responses to Physical Activity of Varying Intensities: An Alternative Perspective on Dose-Response Based on Evolutionary Considerations. Journal of Sports Sciences, v. 23, n. 5, p. 477–500, maio 2005. EL HELOU, N. et al. Impact of Environmental Parameters on Marathon Running Performance. PLoS ONE, v. 7, n. 5, 23 maio 2012. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359364/>. Acesso em: 11 set. 2018. ENGELEN, L.; BILT, A. V. D. Oral Physiology and Texture Perception of Semisolids. Journal of Texture Studies, v. 39, n. 1, p. 83–113, 2008. ENOKA, R. M.; DUCHATEAU, J. Translating Fatigue to Human Performance. Medicine and Science in Sports and Exercise, v. 48, n. 11, p. 2228–2238, 2016. FANGER, P. O. Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering., 1970. Disponível em: <https://www.cabdirect.org/cabdirect/abstract/19722700268>. Acesso em: 12 set. 2018. FELTZ, D. L.; LIRGG, C. D. 1 Self-efficacy Beliefs of Athletes, Teams, and Coaches. [s.l: s.n.] FLOOD, T. R.; WALDRON, M.; JEFFRIES, O. Oral L-Menthol Reduces Thermal Sensation, Increases Work-Rate and Extends Time to Exhaustion, in the Heat at a Fixed Rating of Perceived Exertion. European Journal of Applied Physiology, v. 117, n. 7, p. 1501–1512, jul. 2017. FOGT, D. L. et al. Non-Invasive Measures of Core Temperature versus Ingestible Thermistor during Exercise in the Heat. International Journal of Exercise Science, v. 10, n. 2, p. 225– 233, 2017. FORTES, M. B. et al. Muscle-Damaging Exercise Increases Heat Strain during Subsequent Exercise Heat Stress. Medicine and Science in Sports and Exercise, v. 45, n. 10, p. 1915– 1924, out. 2013. GAGGE, A. P.; FOBELETS, A. P.; G. BERGLUND, L. A standard predictive index of human response to the thermal environment. In: Anais...1 jan. 1986. GAGGE, A. P.; STOLWIJK, J. A.; HARDY, J. D. Comfort and Thermal Sensations and Associated Physiological Responses at Various Ambient Temperatures. Environmental Research, v. 1, n. 1, p. 1–20, jun. 1967. GALLOWAY, S. D.; MAUGHAN, R. J. Effects of Ambient Temperature on the Capacity to Perform Prolonged Cycle Exercise in Man. Medicine and Science in Sports and Exercise, v. 29, n. 9, p. 1240–1249, set. 1997. GIBSON, O. R.; WRIGHTSON, J. G.; HAYES, M. Intermittent Sprint Performance in the Heat Is Not Altered by Augmenting Thermal Perception via L-Menthol or Capsaicin Mouth Rinses. European Journal of Applied Physiology, v. 119, n. 3, p. 653–664, 1 mar. 2019. GILLIS, D. J.; HOUSE, J. R.; TIPTON, M. J. The Influence of Menthol on Thermoregulation and Perception during Exercise in Warm, Humid Conditions. European Journal of Applied Physiology, v. 110, n. 3, p. 609–618, out. 2010. GONZÁLEZ-ALONSO, J. et al. Influence of Body Temperature on the Development of Fatigue during Prolonged Exercise in the Heat. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 86, n. 3, p. 1032–1039, mar. 1999. GREEN, B. G. Menthol Modulates Oral Sensations of Warmth and Cold. Physiology & Behavior, v. 35, n. 3, p. 427–434, set. 1985. GREEN, J. M. et al. RPE-Lactate Dissociation during Extended Cycling. European Journal of Applied Physiology, v. 94, n. 1–2, p. 145–150, maio 2005. GUYTON, A. C.; HALL, J. E. Textbook of medical physiology. 9th ed ed. [s.l.] Philadelphia : W.B. Saunders, 1996. HARDY, C. J.; REJESKI, W. J. Not What, but How One Feels: The Measurement of Affect during Exercise. Journal of Sport and Exercise Psychology, v. 11, n. 3, p. 304–317, 1 set. 1989. HARGREAVES, M. Physiological Limits to Exercise Performance in the Heat. Journal of Science and Medicine in Sport, v. 11, n. 1, p. 66–71, jan. 2008. HENSEL, H.; ZOTTERMAN, Y. The Effect of Menthol on the Thermoreceptors. Acta Physiologica Scandinavica, v. 24, n. 1, p. 27–34, 9 out. 1951. HENSEN, J. L. M. Literature review on thermal comfort in transient conditions. Building and Environment, v. 25, n. 4, p. 309–316, 1 jan. 1990. HETTINGA, F. J. et al. Editorial: Regulation of Endurance Performance: New Frontiers. Frontiers in Physiology, v. 8, 2017. Disponível em: <https://www.frontiersin.org/articles/10.3389/fphys.2017.00727/full>. Acesso em: 4 maio. 2019. HUGHES, J. et al. Indirect Measures of Substrate Utilisation Following Exercise-Induced Muscle Damage. European Journal of Sport Science, v. 13, n. 5, p. 509–517, 2013. JACKSON, A. S.; POLLOCK, M. L. Generalized Equations for Predicting Body Density of Men. British Journal of Nutrition, v. 40, n. 03, p. 497, nov. 1978. JAMES, C. A. et al. Defining the determinants of endurance running performance in the heat. Temperature: Multidisciplinary Biomedical Journal, v. 4, n. 3, p. 314–329, 25 maio 2017. JEFFRIES, O.; WALDRON, M. The effects of menthol on exercise performance and thermal sensation: A meta-analysis. Journal of Science and Medicine in Sport, 1 dez. 2018. JONES, P. R. et al. Pre-Cooling for Endurance Exercise Performance in the Heat: A Systematic Review. BMC medicine, v. 10, p. 166, 18 dez. 2012. JORDT, S.-E.; MCKEMY, D. D.; JULIUS, D. Lessons from Peppers and Peppermint: The Molecular Logic of Thermosensation. Current Opinion in Neurobiology, v. 13, n. 4, p. 487– 492, ago. 2003. JOSEPH, T. et al. Perception of Fatigue during Simulated Competition. Medicine and Science in Sports and Exercise, v. 40, n. 2, p. 381–386, fev. 2008. KAY, C.; SHEPHARD, R. J. On Muscle Strength and the Threshold of Anaerobic Work. Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie, v. 27, n. 4, p. 311–328, 1 dez. 1969. KENEFICK, R. W. et al. Skin Temperature Modifies the Impact of Hypohydration on Aerobic Performance. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 109, n. 1, p. 79–86, jul. 2010. KIYATKIN, E. A. Brain Temperature Fluctuations during Physiological and Pathological Conditions. European Journal of Applied Physiology, v. 101, n. 1, p. 3–17, set. 2007. KOUNALAKIS, S. N. et al. The Effect of Menthol Application to the Skin on Sweating Rate Response during Exercise in Swimmers and Controls. European Journal of Applied Physiology, v. 109, n. 2, p. 183–189, maio 2010. LAMBERT, E. V.; ST CLAIR GIBSON, A.; NOAKES, T. D. Complex Systems Model of Fatigue: Integrative Homoeostatic Control of Peripheral Physiological Systems during Exercise in Humans. British Journal of Sports Medicine, v. 39, n. 1, p. 52–62, jan. 2005. LATORRE, R. et al. ThermoTRP Channels as Modular Proteins with Allosteric Gating. Cell Calcium, v. 42, n. 4–5, p. 427–438, nov. 2007. LIND, E.; JOENS-MATRE, R. R.; EKKEKAKIS, P. What Intensity of Physical Activity Do Previously Sedentary Middle-Aged Women Select? Evidence of a Coherent Pattern from Physiological, Perceptual, and Affective Markers. Preventive Medicine, v. 40, n. 4, p. 407– 419, abr. 2005. LINDAHL, S. G. Sensing Cold and Producing Heat. Anesthesiology, v. 86, n. 4, p. 758–759, abr. 1997. M. VAN LANDUYT, L. et al. Throwing the Mountains into the Lakes: On the Perils of Nomothetic Conceptions of the Exercise-Affect Relationship. Journal of Sport and Exercise Psychology, v. 22, p. 208–234, 1 set. 2000. MACPHERSON, L. J. et al. More than Cool: Promiscuous Relationships of Menthol and Other Sensory Compounds. Molecular and Cellular Neurosciences, v. 32, n. 4, p. 335–343, ago. 2006. MADRID, R. et al. Contribution of TRPM8 Channels to Cold Transduction in Primary Sensory Neurons and Peripheral Nerve Terminals. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, v. 26, n. 48, p. 12512–12525, 29 nov. 2006. MARCORA, S. Perception of Effort during Exercise Is Independent of Afferent Feedback from Skeletal Muscles, Heart, and Lungs. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 106, n. 6, p. 2060–2062, jun. 2009. MARINO, F. E. Methods, Advantages, and Limitations of Body Cooling for Exercise Performance. British Journal of Sports Medicine, v. 36, n. 2, p. 89–94, 1 abr. 2002. MARTINEZ, N. et al. Affective and Enjoyment Responses to High-Intensity Interval Training in Overweight-to-Obese and Insufficiently Active Adults. Journal of Sport & Exercise Psychology, v. 37, n. 2, p. 138–149, abr. 2015. MAUGHAN, R. J. Distance Running in Hot Environments: A Thermal Challenge to the Elite Runner. Scandinavian Journal of Medicine & Science in Sports, v. 20 Suppl 3, p. 95–102, out. 2010. MAUGHAN, R. J.; SHIRREFFS, S. M.; WATSON, P. Exercise, Heat, Hydration and the Brain. Journal of the American College of Nutrition, v. 26, n. 5 Suppl, p. 604S-612S, out. 2007. MCARDLE, W. D.; KATCH, F. I.; KATCH, V. L. Exercise Physiology: Nutrition, Energy, and Human Performance. [s.l.] Lippincott Williams & Wilkins, 2010. MCKEMY, D. D.; NEUHAUSSER, W. M.; JULIUS, D. Identification of a Cold Receptor Reveals a General Role for TRP Channels in Thermosensation. Nature, v. 416, n. 6876, p. 52–58, 7 mar. 2002. MEAMARBASHI, A.; RAJABI, A. The effects of peppermint on exercise performance. Journal of the International Society of Sports Nutrition, v. 10, n. 1, p. 15, 21 mar. 2013. MECHANIC, D.; BRADBURN, N. M. The Structure of Psychological Well-Being. American Sociological Review, v. 35, n. 5, p. 948, out. 1970. MILLET, G. Y. et al. Neuromuscular Consequences of an Extreme Mountain Ultra-Marathon. PLoS ONE, v. 6, n. 2, 22 fev. 2011. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043077/>. Acesso em: 11 set. 2018. MINNITI, A.; TYLER, C. J.; SUNDERLAND, C. Effects of a cooling collar on affect, ratings of perceived exertion, and running performance in the heat. European Journal of Sport Science, v. 11, n. 6, p. 419–429, 1 nov. 2011. MORRISON, S. F.; NAKAMURA, K. Central neural pathways for thermoregulation. Frontiers in bioscience : a journal and virtual library, v. 16, p. 74–104, 1 jan. 2011. MÜNDEL, T.; JONES, D. A. The Effects of Swilling an L(-)-Menthol Solution during Exercise in the Heat. European Journal of Applied Physiology, v. 109, n. 1, p. 59–65, maio 2010. NADEL, E. R. et al. Physiological Defenses against Hyperthermia of Exercise. Annals of the New York Academy of Sciences, v. 301, p. 98–109, 1977. NETO, J. L. S. DECÁLOGO DA CLIMATOLOGIA DO SUDESTE BRASILEIRO. Revista Brasileira de Climatologia, v. 1, n. 1, 2005. Disponível em: <https://revistas.ufpr.br/revistaabclima/article/view/25232>. Acesso em: 17 jun. 2019. NIELSEN, B. et al. Human Circulatory and Thermoregulatory Adaptations with Heat Acclimation and Exercise in a Hot, Dry Environment. The Journal of Physiology, v. 460, p. 467–485, jan. 1993. NIELSEN, B. Heat Stress and Acclimation. Ergonomics, v. 37, n. 1, p. 49–58, jan. 1994. NOAKES, T. D.; GIBSON, A. S. C.; LAMBERT, E. V. From Catastrophe to Complexity: A Novel Model of Integrative Central Neural Regulation of Effort and Fatigue during Exercise in Humans: Summary and Conclusions. British Journal of Sports Medicine, v. 39, n. 2, p. 120–124, 1 fev. 2005. NOAKES, T. D.; ST CLAIR GIBSON, A.; LAMBERT, E. V. From Catastrophe to Complexity: A Novel Model of Integrative Central Neural Regulation of Effort and Fatigue during Exercise in Humans. British Journal of Sports Medicine, v. 38, n. 4, p. 511–514, ago. 2004. NYBO, L. CNS Fatigue and Prolonged Exercise: Effect of Glucose Supplementation. Medicine and Science in Sports and Exercise, v. 35, n. 4, p. 589–594, abr. 2003. NYBO, L. Exercise and Heat Stress: Cerebral Challenges and Consequences. Progress in Brain Research, v. 162, p. 29–43, 2007. NYBO, L. Hyperthermia and Fatigue. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 104, n. 3, p. 871–878, mar. 2008. NYBO, L.; NIELSEN, B. Hyperthermia and Central Fatigue during Prolonged Exercise in Humans. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 91, n. 3, p. 1055–1060, set. 2001. PARFITT, G. et al. Physiological and Perceptual Responses to Affect-Regulated Exercise in Healthy Young Women. Psychophysiology, v. 49, n. 1, p. 104–110, jan. 2012. PARFITT, G.; HARGREAVES, E.; M BURGESS, W. The psychological and physiological responses of sedentary individuals to prescribed and preferred intensity exercise. British journal of health psychology, v. 11, p. 39–53, 1 mar. 2006. PETROSKI, E. L.; PIRES NETO, C. S. VALIDAÇÃO DE EQUAÇÕES ANTROPOMÉTRICAS PARA A ESTIMATIVA DA DENSIDADE CORPORAL EM HOMENS. Revista Brasileira de Atividade Física & Saúde, v. 1, n. 3, p. 5, 28 ago. 2012. PHELPS, C. B. et al. Differential Regulation of TRPV1, TRPV3, and TRPV4 Sensitivity through a Conserved Binding Site on the Ankyrin Repeat Domain. The Journal of Biological Chemistry, v. 285, n. 1, p. 731–740, 1 jan. 2010. PINTO, K. O. C.; RODRIGUES, L. O. C. Efeitos da temperatura da água ingerida sobre a fadiga durante o exercício em ambiente termoneutro. Rev. paul. educ. fís, v. 15, n. 1, p. 45– 54, jun. 2001. PIRES, F. O. et al. The Influence of Peripheral Afferent Signals on the Rating of Perceived Exertion and Time to Exhaustion during Exercise at Different Intensities. Psychophysiology, v. 48, n. 9, p. 1284–1290, set. 2011. PRESLAND, J. D.; DOWSON, M. N.; CAIRNS, S. P. Changes of Motor Drive, Cortical Arousal and Perceived Exertion Following Prolonged Cycling to Exhaustion. European Journal of Applied Physiology, v. 95, n. 1, p. 42–51, set. 2005. R WATSON, H. et al. New compounds with the menthol cooling effect. Journal of the Society of Cosmetic Chemists of Japan, v. 29, 1 jan. 1978. RIERA, F. et al. Physical and Perceptual Cooling with Beverages to Increase Cycle Performance in a Tropical Climate. PloS One, v. 9, n. 8, p. e103718, 2014a. RIERA, F. et al. Physical and Perceptual Cooling with Beverages to Increase Cycle Performance in a Tropical Climate. PloS One, v. 9, n. 8, p. e103718, 2014b. ROBERTSON, C. V.; MARINO, F. E. Prefrontal and Motor Cortex EEG Responses and Their Relationship to Ventilatory Thresholds during Exhaustive Incremental Exercise. European Journal of Applied Physiology, v. 115, n. 9, p. 1939–1948, set. 2015. ROBERTSON, R. J.; NOBLE, B. J. Perception of Physical Exertion: Methods, Mediators and Applications. Exercise and Sport Sciences Reviews, v. 25, n. 1, p. 407, jan. 1997. ROBINSON, S. TEMPERATURE REGULATION IN EXERCISE. Pediatrics, v. 32, p. SUPPL 691-702, out. 1963. ROSE, E. A.; PARFITT, G. A Quantitative Analysis and Qualitative Explanation of the Individual Differences in Affective Responses to Prescribed and Self-Selected Exercise Intensities. Journal of Sport & Exercise Psychology, v. 29, n. 3, p. 281–309, jun. 2007. ROSE, E. A.; PARFITT, G. Can the Feeling Scale Be Used to Regulate Exercise Intensity? Medicine and Science in Sports and Exercise, v. 40, n. 10, p. 1852–1860, out. 2008. ROSE, E. A.; PARFITT, G. Exercise Experience Influences Affective and Motivational Outcomes of Prescribed and Self-Selected Intensity Exercise. Scandinavian Journal of Medicine & Science in Sports, v. 22, n. 2, p. 265–277, abr. 2012. SCHLADER, Z. J. et al. The Independent Roles of Temperature and Thermal Perception in the Control of Human Thermoregulatory Behavior. Physiology & Behavior, v. 103, n. 2, p. 217–224, 3 maio 2011. SCHLADER, Z. J.; STANNARD, S. R.; MÜNDEL, T. Human thermoregulatory behavior during rest and exercise — A prospective review. Physiology & Behavior, v. 99, n. 3, p. 269–275, 3 mar. 2010. SCHULZE, E. et al. Effect of Thermal State and Thermal Comfort on Cycling Performance in the Heat. International Journal of Sports Physiology and Performance, v. 10, n. 5, p. 655– 663, jul. 2015. SESSLER, D. Consequences and treatment of perioperative hypothermia. Anesthesiology Clinics of North America, v. 12, p. 425–456, 1 jan. 1994. SESSLER, D. I. Mild Perioperative Hypothermia. The New England Journal of Medicine, v. 336, n. 24, p. 1730–1737, 12 jun. 1997. SESSLER, D. I. Temperature Monitoring and Perioperative Thermoregulation. Anesthesiology, v. 109, n. 2, p. 318–338, ago. 2008. SIRI, W. E. Body Composition from Fluid Spaces and Density: Analysis of Methods. 1961. Nutrition (Burbank, Los Angeles County, Calif.), v. 9, n. 5, p. 480–491; discussion 480, 492, out. 1993. SÖNMEZ, G. et al. Effects of Oral Supplementation of Mint Extract on Muscle Pain and Blood Lactate. Biomedical Human Kinetics, v. 2, n. 1, p. 66–69, 1 jan. 2010. ST CLAIR GIBSON, A. et al. The Conscious Perception of the Sensation of Fatigue. Sports Medicine (Auckland, N.Z.), v. 33, n. 3, p. 167–176, 2003. STACHENFELD, N. S. The Interrelationship of Research in the Laboratory and the Field to Assess Hydration Status and Determine Mechanisms Involved in Water Regulation during Physical Activity. Sports Medicine (Auckland, N.Z.), v. 44 Suppl 1, p. S97-104, maio 2014. STEENS, A. et al. Fatigue Perceived by Multiple Sclerosis Patients Is Associated with Muscle Fatigue. Neurorehabilitation and Neural Repair, v. 26, n. 1, p. 48–57, jan. 2012. STEVENS, C. J. et al. Running Performance and Thermal Sensation in the Heat Are Improved with Menthol Mouth Rinse but Not Ice Slurry Ingestion. Scandinavian Journal of Medicine & Science in Sports, v. 26, n. 10, p. 1209–1216, out. 2016. STEVENS, C. J. et al. A Comparison of Mixed-Method Cooling Interventions on Preloaded Running Performance in the Heat. Journal of Strength and Conditioning Research, v. 31, n. 3, p. 620–629, mar. 2017. STEVENS, C. J. et al. Endurance Performance Is Influenced by Perceptions of Pain and Temperature: Theory, Applications and Safety Considerations. Sports Medicine (Auckland, N.Z.), v. 48, n. 3, p. 525–537, 2018. STEVENS, C. J.; BEST, R. Menthol: A Fresh Ergogenic Aid for Athletic Performance. Sports Medicine (Auckland, N.Z.), v. 47, n. 6, p. 1035–1042, jun. 2017. STEVENS, C. J.; TAYLOR, L.; DASCOMBE, B. J. Cooling During Exercise: An Overlooked Strategy for Enhancing Endurance Performance in the Heat. Sports Medicine (Auckland, N.Z.), v. 47, n. 5, p. 829–841, maio 2017. SUZUKI, K. et al. Circulating Cytokines and Hormones with Immunosuppressive but Neutrophil-Priming Potentials Rise after Endurance Exercise in Humans. European Journal of Applied Physiology, v. 81, n. 4, p. 281–287, mar. 2000. TATTERSON, A. J. et al. Effects of Heat Stress on Physiological Responses and Exercise Performance in Elite Cyclists. Journal of Science and Medicine in Sport, v. 3, n. 2, p. 186– 193, jun. 2000. TAYLOR, K.-L. et al. FATIGUE MONITORING IN HIGH PERFORMANCE SPORT: A SURVEY OF CURRENT TRENDS. v. 20, n. 1, p. 13, 2012. TEE, J. C.; BOSCH, A. N.; LAMBERT, M. I. Metabolic Consequences of Exercise-Induced Muscle Damage. Sports Medicine (Auckland, N.Z.), v. 37, n. 10, p. 827–836, 2007. TRAN TRONG, T. et al. Ingestion of a Cold Temperature/Menthol Beverage Increases Outdoor Exercise Performance in a Hot, Humid Environment. PloS One, v. 10, n. 4, p. e0123815, 2015. TSATALAS, T. et al. The Effects of Eccentric Exercise-Induced Muscle Damage on Running Kinematics at Different Speeds. Journal of Sports Sciences, v. 31, n. 3, p. 288–298, 2013. TUCKER, R. et al. Impaired Exercise Performance in the Heat Is Associated with an Anticipatory Reduction in Skeletal Muscle Recruitment. Pflugers Archiv: European Journal of Physiology, v. 448, n. 4, p. 422–430, jul. 2004. TUCKER, R. The Anticipatory Regulation of Performance: The Physiological Basis for Pacing Strategies and the Development of a Perception-Based Model for Exercise Performance. British Journal of Sports Medicine, v. 43, n. 6, p. 392–400, jun. 2009. TYLER, C. J.; SUNDERLAND, C. Cooling the Neck Region during Exercise in the Heat. Journal of Athletic Training, v. 46, n. 1, p. 61–68, fev. 2011. ULMER, H. V. Concept of an Extracellular Regulation of Muscular Metabolic Rate during Heavy Exercise in Humans by Psychophysiological Feedback. Experientia, v. 52, n. 5, p. 416–420, 15 maio 1996. VAN CUTSEM, J. et al. Subjective thermal strain impairs endurance performance in a temperate environment. Physiology & Behavior, v. 202, p. 36–44, 1 abr. 2019. VENHORST, A. The psychophysiological regulation of pacing behaviour and performance during prolonged endurance exercise. 2018. 2018. VIANA, D. V.; IGNOTTI, E. A ocorrencia da dengue e variacoes meteorologicas no Brasil: revisao sistematica. Revista Brasileira de Epidemiologia, v. 16, p. 240–256, jun. 2013. WALTERS, T. J. et al. Exercise in the Heat Is Limited by a Critical Internal Temperature. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 89, n. 2, p. 799–806, ago. 2000. WATANABE, C. H. et al. Extração do óleo essencial de menta (Mentha arvensis L.) por destilação por arraste a vapor e extração com etanol. Revista Brasileira De Plantas Medicinais, v. 4, p. 76–86, 1 jan. 2006. WATT, B.; GROVE, R. Perceived Exertion. Sports Medicine, v. 15, n. 4, p. 225–241, 1 abr. 1993. WERNER, J.; MEKJAVIC, I.; TAYLOR, N. A. S. Concepts in physiological regulation: A thermoregulatory perspective. Physiological Bases of Human Performance during Work and Exercise, p. 325–340, 1 jan. 2008. WIDMAIER, E. P.; RAFF, H.; STRANG, K. T. Vander’s Human Physiology. [s.l.] McGraw-Hill Higher Education, 2005.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-10-15T04:00:15Zoai:bdtd.uftm.edu.br:tede/877Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2019-10-15T04:00:15Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
dc.title.none.fl_str_mv A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura
title A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura
spellingShingle A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura
VILAÇA, Alexandre
Mentol.
Psicofisiologia.
Desempenho atlético.
Menthol.
Psychophysiology.
Athletic performance.
Educação Física
title_short A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura
title_full A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura
title_fullStr A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura
title_full_unstemmed A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura
title_sort A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura
author VILAÇA, Alexandre
author_facet VILAÇA, Alexandre
author_role author
dc.contributor.none.fl_str_mv SASAKI, Jeffer Eidi
03999524951
http://lattes.cnpq.br/9249864079237282
dc.contributor.author.fl_str_mv VILAÇA, Alexandre
dc.subject.por.fl_str_mv Mentol.
Psicofisiologia.
Desempenho atlético.
Menthol.
Psychophysiology.
Athletic performance.
Educação Física
topic Mentol.
Psicofisiologia.
Desempenho atlético.
Menthol.
Psychophysiology.
Athletic performance.
Educação Física
description Uma alta temperatura ambiente possui efeito deletério sobre o desempenho atlético, principalmente na realização de exercícios prolongados. Várias estratégias têm sido estudadas no intuito de atenuar o declínio no desempenho, entre eles a utilização do mentol. Contudo, as evidências sobre os efeitos do mentol sobre o desempenho em diferentes temperaturas ainda são escassas. O objetivo do presente estudo foi avaliar os efeitos do enxágue bucal de mentol sobre o desempenho e aspectos psicofisiológicos durante um teste contrarrelógio de 10 km em diferentes faixas de temperatura. Neste sentido, oito homens saudáveis (34 ± 4 anos; 173,0 ± 0,05 cm; 72,0 ± 7,5 kg; VO2max 64,5 ± 5,5 ml/kg/min percentual de gordura corporal 12,0 ± 4,1%) realizaram um ensaio de familiarização e sete ensaios experimentais, três na temperatura de 22°C (CON, PLA, MEN), dois na temperatura 28°C (PLA, MEN) e dois na temperatura de 34°C (PLA, MEN). A temperatura e o tipo de tratamento (PLA, MEN, CON) foram escolhidos randomicamente. Todas as medidas psicofisiológicas (sensação térmica, conforto térmico, percepção subjetiva de esforço e resposta afetiva) foram obtidas a cada km completado. Não foi encontrada diferença significativa no tempo final de teste entre os tratamentos CON (42,4 ± 1,53 min), PLA (43,3 ± 0,9 min), MEN (42,7 ± 2,4 min) na temperatura de 22°C. Nas temperaturas de 28°C e 34°C, também não foi observada diferença estatística no tempo final de prova, apesar da média final de corrida ter sido 54s (28°C) e 36s (34°C) menor na utilização do MEN. Todas as medidas psicofisiológicas se alteraram em relação ao tempo de corrida, porém o MEN não foi capaz de modular nenhuma dessas medidas. O estudo não demonstra melhora de desempenho atribuído à aplicação do enxágue bucal de mentol durante um teste contrarrelógio de 10 km em esteira rolante nas diferentes temperaturas testadas. Desse modo, permanece incerto se alterações nos processos psicofisiológicos são capazes de aumentar o desempenho em ambientes quentes.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-14T14:26:35Z
2019-06-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv VILAÇA, Alexandre. A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura. 2019. 70f. Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2019.
http://bdtd.uftm.edu.br/handle/tede/877
identifier_str_mv VILAÇA, Alexandre. A influência do enxágue bucal de mentol nas variáveis psicofisiológicas e no desempenho de praticantes de corrida de rua em diferentes faixas de temperatura. 2019. 70f. Dissertação (Mestrado em Educação Física) - Programa de Pós-Graduação em Educação Física, Universidade Federal do Triângulo Mineiro, Uberaba, 2019.
url http://bdtd.uftm.edu.br/handle/tede/877
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv ACEVEDO, E. O. et al. Percentual Responses Proximal to the Onset of Blood Lactate Accumulation. The Journal of Sports Medicine and Physical Fitness, v. 43, n. 3, p. 267– 273, set. 2003. ALLEN, P. D.; PANDOLF, K. B. Perceived Exertion Associated with Breathing Hyperoxic Mixtures during Submaximal Work. Medicine and science in sports, v. 9, n. 2, p. 122–127, 1977. ARMSTRONG, L. E.; MARESH, C. M. The Induction and Decay of Heat Acclimatisation in Trained Athletes. Sports Medicine (Auckland, N.Z.), v. 12, n. 5, p. 302–312, nov. 1991. ASTORINO, T. A. et al. Perceptual Changes in Response to Two Regimens of Interval Training in Sedentary Women. Journal of Strength and Conditioning Research, v. 30, n. 4, p. 1067–1076, abr. 2016. BARRADAS, V. L. Air Temperature and Humidity and Human Comfort Index of Some City Parks of Mexico City. International Journal of Biometeorology, v. 35, n. 1, p. 24–28, jun. 1991. BEEDIE, C. J. Placebo Effects in Competitive Sport: Qualitative Data. Journal of Sports Science & Medicine, v. 6, n. 1, p. 21–28, 1 mar. 2007. BEEDIE, C. J.; FOAD, A. J. The Placebo Effect in Sports Performance: A Brief Review. Sports Medicine (Auckland, N.Z.), v. 39, n. 4, p. 313–329, 2009. BEVAN, S.; ANDERSSON, D. A. TRP Channel Antagonists for Pain--Opportunities beyond TRPV1. Current Opinion in Investigational Drugs (London, England: 2000), v. 10, n. 7, p. 655–663, jul. 2009. BIANCO, A. C. Hormônios tireóideos, UCPs e termogênese. Arquivos Brasileiros de Endocrinologia &amp; Metabologia, v. 44, n. 4, p. 281–289, ago. 2000. BIXBY, W. R.; SPALDING, T. W.; HATFIELD, B. D. Temporal Dynamics and Dimensional Specificity of the Affective Response to Exercise of Varying Intensity: Differing Pathways to a Common Outcome. Journal of Sport and Exercise Psychology, v. 23, n. 3, p. 171–190, 1 set. 2001. BLACK, M. I. et al. Critical Power Derived from a 3-Min All-out Test Predicts 16.1-Km Road Time-Trial Performance. European Journal of Sport Science, v. 14, n. 3, p. 217–223, 2014. BLACK, M. I. et al. Self-Pacing Increases Critical Power and Improves Performance during Severe-Intensity Exercise. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, v. 40, n. 7, p. 662–670, jul. 2015. BONGERS, C. C. W. G. et al. Precooling and Percooling (Cooling during Exercise) Both Improve Performance in the Heat: A Meta-Analytical Review. Br J Sports Med, p. bjsports- 2013-092928, 19 abr. 2014. BONGERS, C. C. W. G.; HOPMAN, M. T. E.; EIJSVOGELS, T. M. H. Cooling Interventions for Athletes: An Overview of Effectiveness, Physiological Mechanisms, and Practical Considerations. Temperature (Austin, Tex.), v. 4, n. 1, p. 60–78, 2017. BORG, E. On Perceived Exertion and Its Measurement. 2007. Disponível em: <http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-6862>. Acesso em: 17 abr. 2019. BORG, G. Borg’s Perceived Exertion And Pain Scales. [s.l: s.n.] BORG, G. Escalas de Borg para a dor e o esforço: percebido. [s.l.] Manole, 2000. BORG, G. A. Psychophysical Bases of Perceived Exertion. Medicine and Science in Sports and Exercise, v. 14, n. 5, p. 377–381, 1982. BORG, G. A. V. Physical performance and perceived exertion. Oxford, England: Univer. Lund, 1962. BORG, G.; LINDERHOLM, H. Exercise Performance and Perceived Exertion in Patients with Coronary Insufficiency, Arterial Hypertension and Vasoregulatory Asthenia. Acta Medica Scandinavica, v. 187, n. 1–2, p. 17–26, fev. 1970. BORG, G.; LJUNGGREN, G.; CECI, R. The Increase of Perceived Exertion, Aches and Pain in the Legs, Heart Rate and Blood Lactate during Exercise on a Bicycle Ergometer. European Journal of Applied Physiology and Occupational Physiology, v. 54, n. 4, p. 343–349, 1985. BUGGY, D. J.; CROSSLEY, A. W. Thermoregulation, Mild Perioperative Hypothermia and Postanaesthetic Shivering. British Journal of Anaesthesia, v. 84, n. 5, p. 615–628, maio 2000. BUONO, M. J.; CABRALES, P. Hyperthermia during exercise – a double-edged sword. Temperature: Multidisciplinary Biomedical Journal, v. 3, n. 4, p. 512–513, 6 jul. 2016. CABANAC, M. Performance and Perception at Various Combinations of Treadmill Speed and Slope. Physiology & Behavior, v. 38, n. 6, p. 839–843, 1986. CAFARELLI, E. Peripheral Contributions to the Perception of Effort. Medicine and science in sports and exercise, v. 14, n. 5, p. 382–389, 1982. CALLARD, D. et al. Circadian Rhythms in Human Muscular Efficiency: Continuous Physical Exercise versus Continuous Rest. A Crossover Study. Chronobiology International, v. 17, n. 5, p. 693–704, set. 2000. CARPENTER, S. E.; LYNN, B. Vascular and Sensory Responses of Human Skin to Mild Injury after Topical Treatment with Capsaicin. British Journal of Pharmacology, v. 73, n. 3, p. 755–758, jul. 1981. CATAPAN, C. H. B. AFETOS POSITIVOS E NEGATIVOS DE UNIVERSITÁRIOS E SUAS EXPECTATIVAS FRENTE AO MERCADO DE TRABALHO. p. 59, [s.d.] CATERINA, M. J. Transient Receptor Potential Ion Channels as Participants in Thermosensation and Thermoregulation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, v. 292, n. 1, p. R64-76, jan. 2007. CATERINA, M. J.; JULIUS, D. The Vanilloid Receptor: A Molecular Gateway to the Pain Pathway. Annual Review of Neuroscience, v. 24, p. 487–517, 2001. CHEUVRONT, S. N. et al. Mechanisms of Aerobic Performance Impairment with Heat Stress and Dehydration. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 109, n. 6, p. 1989–1995, dez. 2010. CLARK, V. R. et al. Placebo Effect of Carbohydrate Feedings during a 40-Km Cycling Time Trial. Medicine and Science in Sports and Exercise, v. 32, n. 9, p. 1642–1647, set. 2000. CRANDALL, C. G.; GONZÁLEZ-ALONSO, J. Cardiovascular function in the heat-stressed human. Acta physiologica (Oxford, England), v. 199, n. 4, p. 407–423, ago. 2010. CREWE, H.; TUCKER, R.; NOAKES, T. D. The Rate of Increase in Rating of Perceived Exertion Predicts the Duration of Exercise to Fatigue at a Fixed Power Output in Different Environmental Conditions. European Journal of Applied Physiology, v. 103, n. 5, p. 569– 577, jul. 2008. CUDDY, J. S.; HAILES, W. S.; RUBY, B. C. A Reduced Core to Skin Temperature Gradient, Not a Critical Core Temperature, Affects Aerobic Capacity in the Heat. Journal of Thermal Biology, v. 43, p. 7–12, jul. 2014. DAVIES, R. C.; ROWLANDS, A. V.; ESTON, R. G. Effect of Exercise-Induced Muscle Damage on Ventilatory and Perceived Exertion Responses to Moderate and Severe Intensity Cycle Exercise. European Journal of Applied Physiology, v. 107, n. 1, p. 11–19, set. 2009. ECCLES, R. Menthol and Related Cooling Compounds. The Journal of Pharmacy and Pharmacology, v. 46, n. 8, p. 618–630, ago. 1994. ECCLES, R. Role of Cold Receptors and Menthol in Thirst, the Drive to Breathe and Arousal. Appetite, v. 34, n. 1, p. 29–35, fev. 2000. ECCLES, R. Menthol: Effects on Nasal Sensation of Airflow and the Drive to Breathe. Current Allergy and Asthma Reports, v. 3, n. 3, p. 210–214, maio 2003. ECCLES, R.; JAWAD, M. S.; MORRIS, S. The Effects of Oral Administration of (-)- Menthol on Nasal Resistance to Airflow and Nasal Sensation of Airflow in Subjects Suffering from Nasal Congestion Associated with the Common Cold. The Journal of Pharmacy and Pharmacology, v. 42, n. 9, p. 652–654, set. 1990. EKKEKAKIS, P.; HALL, E. E.; PETRUZZELLO, S. J. Practical Markers of the Transition from Aerobic to Anaerobic Metabolism during Exercise: Rationale and a Case for AffectBased Exercise Prescription. Preventive Medicine, v. 38, n. 2, p. 149–159, fev. 2004. EKKEKAKIS, P.; HALL, E. E.; PETRUZZELLO, S. J. Variation and Homogeneity in Affective Responses to Physical Activity of Varying Intensities: An Alternative Perspective on Dose-Response Based on Evolutionary Considerations. Journal of Sports Sciences, v. 23, n. 5, p. 477–500, maio 2005. EL HELOU, N. et al. Impact of Environmental Parameters on Marathon Running Performance. PLoS ONE, v. 7, n. 5, 23 maio 2012. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359364/>. Acesso em: 11 set. 2018. ENGELEN, L.; BILT, A. V. D. Oral Physiology and Texture Perception of Semisolids. Journal of Texture Studies, v. 39, n. 1, p. 83–113, 2008. ENOKA, R. M.; DUCHATEAU, J. Translating Fatigue to Human Performance. Medicine and Science in Sports and Exercise, v. 48, n. 11, p. 2228–2238, 2016. FANGER, P. O. Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering., 1970. Disponível em: <https://www.cabdirect.org/cabdirect/abstract/19722700268>. Acesso em: 12 set. 2018. FELTZ, D. L.; LIRGG, C. D. 1 Self-efficacy Beliefs of Athletes, Teams, and Coaches. [s.l: s.n.] FLOOD, T. R.; WALDRON, M.; JEFFRIES, O. Oral L-Menthol Reduces Thermal Sensation, Increases Work-Rate and Extends Time to Exhaustion, in the Heat at a Fixed Rating of Perceived Exertion. European Journal of Applied Physiology, v. 117, n. 7, p. 1501–1512, jul. 2017. FOGT, D. L. et al. Non-Invasive Measures of Core Temperature versus Ingestible Thermistor during Exercise in the Heat. International Journal of Exercise Science, v. 10, n. 2, p. 225– 233, 2017. FORTES, M. B. et al. Muscle-Damaging Exercise Increases Heat Strain during Subsequent Exercise Heat Stress. Medicine and Science in Sports and Exercise, v. 45, n. 10, p. 1915– 1924, out. 2013. GAGGE, A. P.; FOBELETS, A. P.; G. BERGLUND, L. A standard predictive index of human response to the thermal environment. In: Anais...1 jan. 1986. GAGGE, A. P.; STOLWIJK, J. A.; HARDY, J. D. Comfort and Thermal Sensations and Associated Physiological Responses at Various Ambient Temperatures. Environmental Research, v. 1, n. 1, p. 1–20, jun. 1967. GALLOWAY, S. D.; MAUGHAN, R. J. Effects of Ambient Temperature on the Capacity to Perform Prolonged Cycle Exercise in Man. Medicine and Science in Sports and Exercise, v. 29, n. 9, p. 1240–1249, set. 1997. GIBSON, O. R.; WRIGHTSON, J. G.; HAYES, M. Intermittent Sprint Performance in the Heat Is Not Altered by Augmenting Thermal Perception via L-Menthol or Capsaicin Mouth Rinses. European Journal of Applied Physiology, v. 119, n. 3, p. 653–664, 1 mar. 2019. GILLIS, D. J.; HOUSE, J. R.; TIPTON, M. J. The Influence of Menthol on Thermoregulation and Perception during Exercise in Warm, Humid Conditions. European Journal of Applied Physiology, v. 110, n. 3, p. 609–618, out. 2010. GONZÁLEZ-ALONSO, J. et al. Influence of Body Temperature on the Development of Fatigue during Prolonged Exercise in the Heat. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 86, n. 3, p. 1032–1039, mar. 1999. GREEN, B. G. Menthol Modulates Oral Sensations of Warmth and Cold. Physiology & Behavior, v. 35, n. 3, p. 427–434, set. 1985. GREEN, J. M. et al. RPE-Lactate Dissociation during Extended Cycling. European Journal of Applied Physiology, v. 94, n. 1–2, p. 145–150, maio 2005. GUYTON, A. C.; HALL, J. E. Textbook of medical physiology. 9th ed ed. [s.l.] Philadelphia : W.B. Saunders, 1996. HARDY, C. J.; REJESKI, W. J. Not What, but How One Feels: The Measurement of Affect during Exercise. Journal of Sport and Exercise Psychology, v. 11, n. 3, p. 304–317, 1 set. 1989. HARGREAVES, M. Physiological Limits to Exercise Performance in the Heat. Journal of Science and Medicine in Sport, v. 11, n. 1, p. 66–71, jan. 2008. HENSEL, H.; ZOTTERMAN, Y. The Effect of Menthol on the Thermoreceptors. Acta Physiologica Scandinavica, v. 24, n. 1, p. 27–34, 9 out. 1951. HENSEN, J. L. M. Literature review on thermal comfort in transient conditions. Building and Environment, v. 25, n. 4, p. 309–316, 1 jan. 1990. HETTINGA, F. J. et al. Editorial: Regulation of Endurance Performance: New Frontiers. Frontiers in Physiology, v. 8, 2017. Disponível em: <https://www.frontiersin.org/articles/10.3389/fphys.2017.00727/full>. Acesso em: 4 maio. 2019. HUGHES, J. et al. Indirect Measures of Substrate Utilisation Following Exercise-Induced Muscle Damage. European Journal of Sport Science, v. 13, n. 5, p. 509–517, 2013. JACKSON, A. S.; POLLOCK, M. L. Generalized Equations for Predicting Body Density of Men. British Journal of Nutrition, v. 40, n. 03, p. 497, nov. 1978. JAMES, C. A. et al. Defining the determinants of endurance running performance in the heat. Temperature: Multidisciplinary Biomedical Journal, v. 4, n. 3, p. 314–329, 25 maio 2017. JEFFRIES, O.; WALDRON, M. The effects of menthol on exercise performance and thermal sensation: A meta-analysis. Journal of Science and Medicine in Sport, 1 dez. 2018. JONES, P. R. et al. Pre-Cooling for Endurance Exercise Performance in the Heat: A Systematic Review. BMC medicine, v. 10, p. 166, 18 dez. 2012. JORDT, S.-E.; MCKEMY, D. D.; JULIUS, D. Lessons from Peppers and Peppermint: The Molecular Logic of Thermosensation. Current Opinion in Neurobiology, v. 13, n. 4, p. 487– 492, ago. 2003. JOSEPH, T. et al. Perception of Fatigue during Simulated Competition. Medicine and Science in Sports and Exercise, v. 40, n. 2, p. 381–386, fev. 2008. KAY, C.; SHEPHARD, R. J. On Muscle Strength and the Threshold of Anaerobic Work. Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie, v. 27, n. 4, p. 311–328, 1 dez. 1969. KENEFICK, R. W. et al. Skin Temperature Modifies the Impact of Hypohydration on Aerobic Performance. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 109, n. 1, p. 79–86, jul. 2010. KIYATKIN, E. A. Brain Temperature Fluctuations during Physiological and Pathological Conditions. European Journal of Applied Physiology, v. 101, n. 1, p. 3–17, set. 2007. KOUNALAKIS, S. N. et al. The Effect of Menthol Application to the Skin on Sweating Rate Response during Exercise in Swimmers and Controls. European Journal of Applied Physiology, v. 109, n. 2, p. 183–189, maio 2010. LAMBERT, E. V.; ST CLAIR GIBSON, A.; NOAKES, T. D. Complex Systems Model of Fatigue: Integrative Homoeostatic Control of Peripheral Physiological Systems during Exercise in Humans. British Journal of Sports Medicine, v. 39, n. 1, p. 52–62, jan. 2005. LATORRE, R. et al. ThermoTRP Channels as Modular Proteins with Allosteric Gating. Cell Calcium, v. 42, n. 4–5, p. 427–438, nov. 2007. LIND, E.; JOENS-MATRE, R. R.; EKKEKAKIS, P. What Intensity of Physical Activity Do Previously Sedentary Middle-Aged Women Select? Evidence of a Coherent Pattern from Physiological, Perceptual, and Affective Markers. Preventive Medicine, v. 40, n. 4, p. 407– 419, abr. 2005. LINDAHL, S. G. Sensing Cold and Producing Heat. Anesthesiology, v. 86, n. 4, p. 758–759, abr. 1997. M. VAN LANDUYT, L. et al. Throwing the Mountains into the Lakes: On the Perils of Nomothetic Conceptions of the Exercise-Affect Relationship. Journal of Sport and Exercise Psychology, v. 22, p. 208–234, 1 set. 2000. MACPHERSON, L. J. et al. More than Cool: Promiscuous Relationships of Menthol and Other Sensory Compounds. Molecular and Cellular Neurosciences, v. 32, n. 4, p. 335–343, ago. 2006. MADRID, R. et al. Contribution of TRPM8 Channels to Cold Transduction in Primary Sensory Neurons and Peripheral Nerve Terminals. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, v. 26, n. 48, p. 12512–12525, 29 nov. 2006. MARCORA, S. Perception of Effort during Exercise Is Independent of Afferent Feedback from Skeletal Muscles, Heart, and Lungs. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 106, n. 6, p. 2060–2062, jun. 2009. MARINO, F. E. Methods, Advantages, and Limitations of Body Cooling for Exercise Performance. British Journal of Sports Medicine, v. 36, n. 2, p. 89–94, 1 abr. 2002. MARTINEZ, N. et al. Affective and Enjoyment Responses to High-Intensity Interval Training in Overweight-to-Obese and Insufficiently Active Adults. Journal of Sport & Exercise Psychology, v. 37, n. 2, p. 138–149, abr. 2015. MAUGHAN, R. J. Distance Running in Hot Environments: A Thermal Challenge to the Elite Runner. Scandinavian Journal of Medicine & Science in Sports, v. 20 Suppl 3, p. 95–102, out. 2010. MAUGHAN, R. J.; SHIRREFFS, S. M.; WATSON, P. Exercise, Heat, Hydration and the Brain. Journal of the American College of Nutrition, v. 26, n. 5 Suppl, p. 604S-612S, out. 2007. MCARDLE, W. D.; KATCH, F. I.; KATCH, V. L. Exercise Physiology: Nutrition, Energy, and Human Performance. [s.l.] Lippincott Williams & Wilkins, 2010. MCKEMY, D. D.; NEUHAUSSER, W. M.; JULIUS, D. Identification of a Cold Receptor Reveals a General Role for TRP Channels in Thermosensation. Nature, v. 416, n. 6876, p. 52–58, 7 mar. 2002. MEAMARBASHI, A.; RAJABI, A. The effects of peppermint on exercise performance. Journal of the International Society of Sports Nutrition, v. 10, n. 1, p. 15, 21 mar. 2013. MECHANIC, D.; BRADBURN, N. M. The Structure of Psychological Well-Being. American Sociological Review, v. 35, n. 5, p. 948, out. 1970. MILLET, G. Y. et al. Neuromuscular Consequences of an Extreme Mountain Ultra-Marathon. PLoS ONE, v. 6, n. 2, 22 fev. 2011. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043077/>. Acesso em: 11 set. 2018. MINNITI, A.; TYLER, C. J.; SUNDERLAND, C. Effects of a cooling collar on affect, ratings of perceived exertion, and running performance in the heat. European Journal of Sport Science, v. 11, n. 6, p. 419–429, 1 nov. 2011. MORRISON, S. F.; NAKAMURA, K. Central neural pathways for thermoregulation. Frontiers in bioscience : a journal and virtual library, v. 16, p. 74–104, 1 jan. 2011. MÜNDEL, T.; JONES, D. A. The Effects of Swilling an L(-)-Menthol Solution during Exercise in the Heat. European Journal of Applied Physiology, v. 109, n. 1, p. 59–65, maio 2010. NADEL, E. R. et al. Physiological Defenses against Hyperthermia of Exercise. Annals of the New York Academy of Sciences, v. 301, p. 98–109, 1977. NETO, J. L. S. DECÁLOGO DA CLIMATOLOGIA DO SUDESTE BRASILEIRO. Revista Brasileira de Climatologia, v. 1, n. 1, 2005. Disponível em: <https://revistas.ufpr.br/revistaabclima/article/view/25232>. Acesso em: 17 jun. 2019. NIELSEN, B. et al. Human Circulatory and Thermoregulatory Adaptations with Heat Acclimation and Exercise in a Hot, Dry Environment. The Journal of Physiology, v. 460, p. 467–485, jan. 1993. NIELSEN, B. Heat Stress and Acclimation. Ergonomics, v. 37, n. 1, p. 49–58, jan. 1994. NOAKES, T. D.; GIBSON, A. S. C.; LAMBERT, E. V. From Catastrophe to Complexity: A Novel Model of Integrative Central Neural Regulation of Effort and Fatigue during Exercise in Humans: Summary and Conclusions. British Journal of Sports Medicine, v. 39, n. 2, p. 120–124, 1 fev. 2005. NOAKES, T. D.; ST CLAIR GIBSON, A.; LAMBERT, E. V. From Catastrophe to Complexity: A Novel Model of Integrative Central Neural Regulation of Effort and Fatigue during Exercise in Humans. British Journal of Sports Medicine, v. 38, n. 4, p. 511–514, ago. 2004. NYBO, L. CNS Fatigue and Prolonged Exercise: Effect of Glucose Supplementation. Medicine and Science in Sports and Exercise, v. 35, n. 4, p. 589–594, abr. 2003. NYBO, L. Exercise and Heat Stress: Cerebral Challenges and Consequences. Progress in Brain Research, v. 162, p. 29–43, 2007. NYBO, L. Hyperthermia and Fatigue. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 104, n. 3, p. 871–878, mar. 2008. NYBO, L.; NIELSEN, B. Hyperthermia and Central Fatigue during Prolonged Exercise in Humans. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 91, n. 3, p. 1055–1060, set. 2001. PARFITT, G. et al. Physiological and Perceptual Responses to Affect-Regulated Exercise in Healthy Young Women. Psychophysiology, v. 49, n. 1, p. 104–110, jan. 2012. PARFITT, G.; HARGREAVES, E.; M BURGESS, W. The psychological and physiological responses of sedentary individuals to prescribed and preferred intensity exercise. British journal of health psychology, v. 11, p. 39–53, 1 mar. 2006. PETROSKI, E. L.; PIRES NETO, C. S. VALIDAÇÃO DE EQUAÇÕES ANTROPOMÉTRICAS PARA A ESTIMATIVA DA DENSIDADE CORPORAL EM HOMENS. Revista Brasileira de Atividade Física & Saúde, v. 1, n. 3, p. 5, 28 ago. 2012. PHELPS, C. B. et al. Differential Regulation of TRPV1, TRPV3, and TRPV4 Sensitivity through a Conserved Binding Site on the Ankyrin Repeat Domain. The Journal of Biological Chemistry, v. 285, n. 1, p. 731–740, 1 jan. 2010. PINTO, K. O. C.; RODRIGUES, L. O. C. Efeitos da temperatura da água ingerida sobre a fadiga durante o exercício em ambiente termoneutro. Rev. paul. educ. fís, v. 15, n. 1, p. 45– 54, jun. 2001. PIRES, F. O. et al. The Influence of Peripheral Afferent Signals on the Rating of Perceived Exertion and Time to Exhaustion during Exercise at Different Intensities. Psychophysiology, v. 48, n. 9, p. 1284–1290, set. 2011. PRESLAND, J. D.; DOWSON, M. N.; CAIRNS, S. P. Changes of Motor Drive, Cortical Arousal and Perceived Exertion Following Prolonged Cycling to Exhaustion. European Journal of Applied Physiology, v. 95, n. 1, p. 42–51, set. 2005. R WATSON, H. et al. New compounds with the menthol cooling effect. Journal of the Society of Cosmetic Chemists of Japan, v. 29, 1 jan. 1978. RIERA, F. et al. Physical and Perceptual Cooling with Beverages to Increase Cycle Performance in a Tropical Climate. PloS One, v. 9, n. 8, p. e103718, 2014a. RIERA, F. et al. Physical and Perceptual Cooling with Beverages to Increase Cycle Performance in a Tropical Climate. PloS One, v. 9, n. 8, p. e103718, 2014b. ROBERTSON, C. V.; MARINO, F. E. Prefrontal and Motor Cortex EEG Responses and Their Relationship to Ventilatory Thresholds during Exhaustive Incremental Exercise. European Journal of Applied Physiology, v. 115, n. 9, p. 1939–1948, set. 2015. ROBERTSON, R. J.; NOBLE, B. J. Perception of Physical Exertion: Methods, Mediators and Applications. Exercise and Sport Sciences Reviews, v. 25, n. 1, p. 407, jan. 1997. ROBINSON, S. TEMPERATURE REGULATION IN EXERCISE. Pediatrics, v. 32, p. SUPPL 691-702, out. 1963. ROSE, E. A.; PARFITT, G. A Quantitative Analysis and Qualitative Explanation of the Individual Differences in Affective Responses to Prescribed and Self-Selected Exercise Intensities. Journal of Sport & Exercise Psychology, v. 29, n. 3, p. 281–309, jun. 2007. ROSE, E. A.; PARFITT, G. Can the Feeling Scale Be Used to Regulate Exercise Intensity? Medicine and Science in Sports and Exercise, v. 40, n. 10, p. 1852–1860, out. 2008. ROSE, E. A.; PARFITT, G. Exercise Experience Influences Affective and Motivational Outcomes of Prescribed and Self-Selected Intensity Exercise. Scandinavian Journal of Medicine & Science in Sports, v. 22, n. 2, p. 265–277, abr. 2012. SCHLADER, Z. J. et al. The Independent Roles of Temperature and Thermal Perception in the Control of Human Thermoregulatory Behavior. Physiology & Behavior, v. 103, n. 2, p. 217–224, 3 maio 2011. SCHLADER, Z. J.; STANNARD, S. R.; MÜNDEL, T. Human thermoregulatory behavior during rest and exercise — A prospective review. Physiology & Behavior, v. 99, n. 3, p. 269–275, 3 mar. 2010. SCHULZE, E. et al. Effect of Thermal State and Thermal Comfort on Cycling Performance in the Heat. International Journal of Sports Physiology and Performance, v. 10, n. 5, p. 655– 663, jul. 2015. SESSLER, D. Consequences and treatment of perioperative hypothermia. Anesthesiology Clinics of North America, v. 12, p. 425–456, 1 jan. 1994. SESSLER, D. I. Mild Perioperative Hypothermia. The New England Journal of Medicine, v. 336, n. 24, p. 1730–1737, 12 jun. 1997. SESSLER, D. I. Temperature Monitoring and Perioperative Thermoregulation. Anesthesiology, v. 109, n. 2, p. 318–338, ago. 2008. SIRI, W. E. Body Composition from Fluid Spaces and Density: Analysis of Methods. 1961. Nutrition (Burbank, Los Angeles County, Calif.), v. 9, n. 5, p. 480–491; discussion 480, 492, out. 1993. SÖNMEZ, G. et al. Effects of Oral Supplementation of Mint Extract on Muscle Pain and Blood Lactate. Biomedical Human Kinetics, v. 2, n. 1, p. 66–69, 1 jan. 2010. ST CLAIR GIBSON, A. et al. The Conscious Perception of the Sensation of Fatigue. Sports Medicine (Auckland, N.Z.), v. 33, n. 3, p. 167–176, 2003. STACHENFELD, N. S. The Interrelationship of Research in the Laboratory and the Field to Assess Hydration Status and Determine Mechanisms Involved in Water Regulation during Physical Activity. Sports Medicine (Auckland, N.Z.), v. 44 Suppl 1, p. S97-104, maio 2014. STEENS, A. et al. Fatigue Perceived by Multiple Sclerosis Patients Is Associated with Muscle Fatigue. Neurorehabilitation and Neural Repair, v. 26, n. 1, p. 48–57, jan. 2012. STEVENS, C. J. et al. Running Performance and Thermal Sensation in the Heat Are Improved with Menthol Mouth Rinse but Not Ice Slurry Ingestion. Scandinavian Journal of Medicine & Science in Sports, v. 26, n. 10, p. 1209–1216, out. 2016. STEVENS, C. J. et al. A Comparison of Mixed-Method Cooling Interventions on Preloaded Running Performance in the Heat. Journal of Strength and Conditioning Research, v. 31, n. 3, p. 620–629, mar. 2017. STEVENS, C. J. et al. Endurance Performance Is Influenced by Perceptions of Pain and Temperature: Theory, Applications and Safety Considerations. Sports Medicine (Auckland, N.Z.), v. 48, n. 3, p. 525–537, 2018. STEVENS, C. J.; BEST, R. Menthol: A Fresh Ergogenic Aid for Athletic Performance. Sports Medicine (Auckland, N.Z.), v. 47, n. 6, p. 1035–1042, jun. 2017. STEVENS, C. J.; TAYLOR, L.; DASCOMBE, B. J. Cooling During Exercise: An Overlooked Strategy for Enhancing Endurance Performance in the Heat. Sports Medicine (Auckland, N.Z.), v. 47, n. 5, p. 829–841, maio 2017. SUZUKI, K. et al. Circulating Cytokines and Hormones with Immunosuppressive but Neutrophil-Priming Potentials Rise after Endurance Exercise in Humans. European Journal of Applied Physiology, v. 81, n. 4, p. 281–287, mar. 2000. TATTERSON, A. J. et al. Effects of Heat Stress on Physiological Responses and Exercise Performance in Elite Cyclists. Journal of Science and Medicine in Sport, v. 3, n. 2, p. 186– 193, jun. 2000. TAYLOR, K.-L. et al. FATIGUE MONITORING IN HIGH PERFORMANCE SPORT: A SURVEY OF CURRENT TRENDS. v. 20, n. 1, p. 13, 2012. TEE, J. C.; BOSCH, A. N.; LAMBERT, M. I. Metabolic Consequences of Exercise-Induced Muscle Damage. Sports Medicine (Auckland, N.Z.), v. 37, n. 10, p. 827–836, 2007. TRAN TRONG, T. et al. Ingestion of a Cold Temperature/Menthol Beverage Increases Outdoor Exercise Performance in a Hot, Humid Environment. PloS One, v. 10, n. 4, p. e0123815, 2015. TSATALAS, T. et al. The Effects of Eccentric Exercise-Induced Muscle Damage on Running Kinematics at Different Speeds. Journal of Sports Sciences, v. 31, n. 3, p. 288–298, 2013. TUCKER, R. et al. Impaired Exercise Performance in the Heat Is Associated with an Anticipatory Reduction in Skeletal Muscle Recruitment. Pflugers Archiv: European Journal of Physiology, v. 448, n. 4, p. 422–430, jul. 2004. TUCKER, R. The Anticipatory Regulation of Performance: The Physiological Basis for Pacing Strategies and the Development of a Perception-Based Model for Exercise Performance. British Journal of Sports Medicine, v. 43, n. 6, p. 392–400, jun. 2009. TYLER, C. J.; SUNDERLAND, C. Cooling the Neck Region during Exercise in the Heat. Journal of Athletic Training, v. 46, n. 1, p. 61–68, fev. 2011. ULMER, H. V. Concept of an Extracellular Regulation of Muscular Metabolic Rate during Heavy Exercise in Humans by Psychophysiological Feedback. Experientia, v. 52, n. 5, p. 416–420, 15 maio 1996. VAN CUTSEM, J. et al. Subjective thermal strain impairs endurance performance in a temperate environment. Physiology & Behavior, v. 202, p. 36–44, 1 abr. 2019. VENHORST, A. The psychophysiological regulation of pacing behaviour and performance during prolonged endurance exercise. 2018. 2018. VIANA, D. V.; IGNOTTI, E. A ocorrencia da dengue e variacoes meteorologicas no Brasil: revisao sistematica. Revista Brasileira de Epidemiologia, v. 16, p. 240–256, jun. 2013. WALTERS, T. J. et al. Exercise in the Heat Is Limited by a Critical Internal Temperature. Journal of Applied Physiology (Bethesda, Md.: 1985), v. 89, n. 2, p. 799–806, ago. 2000. WATANABE, C. H. et al. Extração do óleo essencial de menta (Mentha arvensis L.) por destilação por arraste a vapor e extração com etanol. Revista Brasileira De Plantas Medicinais, v. 4, p. 76–86, 1 jan. 2006. WATT, B.; GROVE, R. Perceived Exertion. Sports Medicine, v. 15, n. 4, p. 225–241, 1 abr. 1993. WERNER, J.; MEKJAVIC, I.; TAYLOR, N. A. S. Concepts in physiological regulation: A thermoregulatory perspective. Physiological Bases of Human Performance during Work and Exercise, p. 325–340, 1 jan. 2008. WIDMAIER, E. P.; RAFF, H.; STRANG, K. T. Vander’s Human Physiology. [s.l.] McGraw-Hill Higher Education, 2005.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Curso de Graduação em Educação Física
Brasil
UFTM
Programa de Pós-Graduação em Educação Física
publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Curso de Graduação em Educação Física
Brasil
UFTM
Programa de Pós-Graduação em Educação Física
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFTM
instname:Universidade Federal do Triangulo Mineiro (UFTM)
instacron:UFTM
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
instacron_str UFTM
institution UFTM
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
collection Biblioteca Digital de Teses e Dissertações da UFTM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)
repository.mail.fl_str_mv bdtd@uftm.edu.br||bdtd@uftm.edu.br
_version_ 1813013320979972096