Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFTM |
Texto Completo: | http://bdtd.uftm.edu.br/handle/tede/181 |
Resumo: | No presente estudo, os efeitos do transplante de células mononucleares (TMN) extraídas de medula óssea de ratos espontaneamente hipertensos (SHR) adultos (Ad) ou jovens (Jv) isogênicos ou de ratos Wistar-Kyoto (WKY) normotensos alogênicos sobre os níveis de pressão arterial sistêmica de SHRs fêmeas foram avaliados. Células mononucleares de medula óssea foram retiradas de tíbias, fêmurs e úmeros de SHRs doadores machos isogênicos adultos (de 16 semanas de idade, TMN-Ad, n=4) ou jovens (de 4 semanas de idade, TMN-Jv, n=2) ou de ratos WKY normotensos (de 16 semanas de idade, TMN-WKY, n=2) e injetadas (5x106 cels./rato, i.v.) em SHRs receptoras fêmeas de 16-20 semanas de idade (grupos TMN-Ad, n=10, TMN-Jv, n=7 e TMN-WKY, n=7). As células mononucleares foram marcadas com o corante fluorescente celltracker CM-DiI, previamente à administração. Ratas SHRs fêmeas, recebendo apenas o veículo, formaram o grupo controle (CON, n=15). Pressão arterial (PA) indireta foi registrada diariamente ou a cada dois dias por meio do método de oclusão da artéria caudal por uma semana antes até duas semanas, após o transplante em todos os grupos experimentais. No final desse período, após prévia canulação (24-48 horas antes), todos os animais foram submetidos ao registro direto da pressão arterial pulsátil por 01 hora, em condições estáveis e de repouso. Em seguida, posteriormente à anestesia com pentobarbital sódico, os animais foram eutanasiados. Concluído o sacrifício, microscopia de fluorescência foi realizada em cortes histológicos teciduais dos órgãos removidos, incluindo rins, baço, pulmões e coração, a fim de se verificar a presença de células de SHR doadores (celltracker CM-DiI+). Em ambos os grupos submetidos ao transplante isogênico (TMN-Ad e TMN-Jv), a PA foi reduzida após o terceiro dia, permanecendo baixa até o final do período de observação. Confirmando estes achados, os valores de PA média avaliados por meio de medida direta foram de 137±4mmHg no grupo TMN-Ad e 136±3mmHg no grupo TMN-Jv (versus 163±5mmHg no grupo CON, p<0.005). Em adição, nenhuma diferença nos parâmetros de variabilidade da frequência cardíaca e na sensibilidade barorreflexa espontânea foram observadas entre os grupos, enquanto que a variância, o componente VLF (very low frequency) e o componente LF (low frequency) da variabilidade da pressão arterial foram significativamente reduzidos, em ambos os grupos TMN-Ad e TMN-Jv. Também se observou uma diminuição na hipertrofia cardíaca, provavelmente pela redução da sobrecarga hemodinâmica imposta ao ventrículo esquerdo. Não foram observadas modificações na densidade glomerular nos grupos TMN-Jv e TMN-Ad, comparados ao grupo CON. Pequenas quantidades de células foram encontradas em vários tecidos, incluindo os rins, enquanto um grande número de células estava marcadamente presente no baço dos animais que receberam transplante isogênico. Por outro lado, nas SHRs submetidas ao transplante alogênico com células de ratos WKY (grupo TMN-WKY), ao final do período de observação, nenhuma queda da PA foi observada. Em concordância, a PA média direta medida nos animais TMN-WKY não diferiu dos respectivos animais controles. Nenhuma modificação foi observada na variabilidade cardiovascular, sensibilidade barorreflexa, hipertrofia cardíaca e densidade glomerular dos animais TMN-WKY. No transplante alogênico, células WKY transplantadas foram encontradas apenas no baço, sugerindo rejeição das células. Esses achados sugerem que o transplante de células mononucleares de medula óssea isogênica, em animais imunocompetentes, de diferentes idades é capaz de reduzir a pressão arterial associada à hipertensão arterial sistêmica. |
id |
UFTM_d1442de59de584a5f57ff60096e75cda |
---|---|
oai_identifier_str |
oai:bdtd.uftm.edu.br:tede/181 |
network_acronym_str |
UFTM |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFTM |
repository_id_str |
|
spelling |
Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratosMedula ósseaTransplante de medula ósseaCélulas da medula ósseaHipertensãoBone marrowBone marrow transplantationBone marrow cellsHypertensionBiologia GeralNo presente estudo, os efeitos do transplante de células mononucleares (TMN) extraídas de medula óssea de ratos espontaneamente hipertensos (SHR) adultos (Ad) ou jovens (Jv) isogênicos ou de ratos Wistar-Kyoto (WKY) normotensos alogênicos sobre os níveis de pressão arterial sistêmica de SHRs fêmeas foram avaliados. Células mononucleares de medula óssea foram retiradas de tíbias, fêmurs e úmeros de SHRs doadores machos isogênicos adultos (de 16 semanas de idade, TMN-Ad, n=4) ou jovens (de 4 semanas de idade, TMN-Jv, n=2) ou de ratos WKY normotensos (de 16 semanas de idade, TMN-WKY, n=2) e injetadas (5x106 cels./rato, i.v.) em SHRs receptoras fêmeas de 16-20 semanas de idade (grupos TMN-Ad, n=10, TMN-Jv, n=7 e TMN-WKY, n=7). As células mononucleares foram marcadas com o corante fluorescente celltracker CM-DiI, previamente à administração. Ratas SHRs fêmeas, recebendo apenas o veículo, formaram o grupo controle (CON, n=15). Pressão arterial (PA) indireta foi registrada diariamente ou a cada dois dias por meio do método de oclusão da artéria caudal por uma semana antes até duas semanas, após o transplante em todos os grupos experimentais. No final desse período, após prévia canulação (24-48 horas antes), todos os animais foram submetidos ao registro direto da pressão arterial pulsátil por 01 hora, em condições estáveis e de repouso. Em seguida, posteriormente à anestesia com pentobarbital sódico, os animais foram eutanasiados. Concluído o sacrifício, microscopia de fluorescência foi realizada em cortes histológicos teciduais dos órgãos removidos, incluindo rins, baço, pulmões e coração, a fim de se verificar a presença de células de SHR doadores (celltracker CM-DiI+). Em ambos os grupos submetidos ao transplante isogênico (TMN-Ad e TMN-Jv), a PA foi reduzida após o terceiro dia, permanecendo baixa até o final do período de observação. Confirmando estes achados, os valores de PA média avaliados por meio de medida direta foram de 137±4mmHg no grupo TMN-Ad e 136±3mmHg no grupo TMN-Jv (versus 163±5mmHg no grupo CON, p<0.005). Em adição, nenhuma diferença nos parâmetros de variabilidade da frequência cardíaca e na sensibilidade barorreflexa espontânea foram observadas entre os grupos, enquanto que a variância, o componente VLF (very low frequency) e o componente LF (low frequency) da variabilidade da pressão arterial foram significativamente reduzidos, em ambos os grupos TMN-Ad e TMN-Jv. Também se observou uma diminuição na hipertrofia cardíaca, provavelmente pela redução da sobrecarga hemodinâmica imposta ao ventrículo esquerdo. Não foram observadas modificações na densidade glomerular nos grupos TMN-Jv e TMN-Ad, comparados ao grupo CON. Pequenas quantidades de células foram encontradas em vários tecidos, incluindo os rins, enquanto um grande número de células estava marcadamente presente no baço dos animais que receberam transplante isogênico. Por outro lado, nas SHRs submetidas ao transplante alogênico com células de ratos WKY (grupo TMN-WKY), ao final do período de observação, nenhuma queda da PA foi observada. Em concordância, a PA média direta medida nos animais TMN-WKY não diferiu dos respectivos animais controles. Nenhuma modificação foi observada na variabilidade cardiovascular, sensibilidade barorreflexa, hipertrofia cardíaca e densidade glomerular dos animais TMN-WKY. No transplante alogênico, células WKY transplantadas foram encontradas apenas no baço, sugerindo rejeição das células. Esses achados sugerem que o transplante de células mononucleares de medula óssea isogênica, em animais imunocompetentes, de diferentes idades é capaz de reduzir a pressão arterial associada à hipertensão arterial sistêmica.In the present study, the effects of transplantation of bone marrow-mononuclear cells (MNT) from isogenic adult (Ad) or young (Yo) spontaneously hypertensive rats (SHR) or allogenic normotensive Wistar-Kyoto (WKY) rats on systemic arterial blood pressure levels of receptor SHRs were assessed. Bone marrow-mononuclear cells were extracted from tibiae, femurs and umerus of isogenic male adult (16 weeks-old aged rats, MNT-Ad, n=4) or young (4 weeks-old rats, MNT-Yo, n=2) donor SHRs or allogenic male adult normotensive WKY rats (16 weeks-old aged rats, MNT-WKY, n=2) and injected (5x106 cells/rats, i.v.) in 24 female 16-20 weeks-old aged receptor SHRs (respectively, MNT-Ad, n=10, MNT-Yo, n=7 and MNT-WKY, n=7). Mononuclear cells were labeled using fluorescent stain celltracker CM-DiI, before administration in order to track cell destination. Age-matched female SHRs receiving only vehicle formed control groups (CON, n=15). Indirect arterial pressure (AP) were daily or each two days recorded by means of caudal artery occlusion method during one week before and until two weeks after cell transplantation in all experimental groups. At the ending, after previous canulation (performed 24-48 hours before), all animals were submitted to a pulsatile direct AP recording session during one hour in conscious freely moving conditions. Following, all animals were euthanized under supra-dosage of anesthetic sodium thiopental (100mg/Kg, i.p.) and fluorescence microscopy was used on thin sections of several organs including kidneys, spleen, lung and heart in order to track donor CM-DiI+ cells. In both groups submitted to isogenic transplantation (MNT-Ad and MNT-Yo), AP was significantly reduced after the third day, remaining lower until the end of observation period. Confirming these findings, the values of mean AP directly measured were 137±4mmHg in MNT-Ad group and 136±3mmHg in MNT-Yo group (versus 163±5mmHg in CON group, p<0.005). In addition, no difference in heart rate variability and spontaneous baroreflex sensitivity parameters were observed while variance, very low frequency and low frequency components of arterial pressure variability were significantly lowers in both MNT-Ad and MNT-Yo groups. A significant reduction in cardiac hypertrophy, probably due to the relief in hemodynamic overload on left ventricle was also observed. No changes were verified in glomerular density in both MNT-Yo and MNT-Ad groups, compared to CON group. Small amounts of CM-DiI+ cells were found in several tissues, including the kidneys, while a great amount of labeled transplanted cells were present into the spleen of the animals that received isogenic transplantation. On the other hand, in SHRs submitted to allogenic transplantation with WKY cells (MNT-WKY group), no reduction in AP was observed after eleven day of observation. According to this, direct AP measurements in MNT-WKY animals were not different of control animals. In addition, no changes in cardiovascular variability, baroreflex sensitivity, cardiac hypertrophy and glomerular density were observed in MNT-WKY animals. In this allogenic transplantation, labeled transplanted WKY cells were found only into the spleen, suggesting immune rejection. All these findings indicate that isogenic, in immunocompetent animals, transplantation of bone marrow-mononuclear cells with different ages is able to consistently reduce arterial blood pressure in systemic arterial hypertension.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Curso de MedicinaBrasilUFTMCurso de Pós-Graduação em Ciências FisiológicasSILVA, Valdo José Dias da640.030.516-53http://lattes.cnpq.br/4763314549493316ALMEIDA, Thalles Ramos2015-12-08T17:16:52Z2012-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfALMEIDA, Thalles Ramos. Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos. 2012. 99F. Dissertação (Mestrado em Ciências Fisiológicas) - Curso de Pós-Graduação em Ciências Fisiológicas - Bioquímica, Fisiologia e Farmacologia, Universidade Federal do Triângulo Mineiro, Uberaba, 2012.http://bdtd.uftm.edu.br/handle/tede/181porAbboud FM, Harwani SC, Chapleau MW. Autonomic Neural Regulation of the Immune System Implications for Hypertension and Cardiovascular Disease. Hypertension. 2012;59(4):755-62. Ahmadbeigi N, Shafiee A, Seyedjafari E, Gheisari Y, Vassei M, Amanpour S, Amini S, Bagherizadeh I, Soleimani M. Early spontaneous immortalization and loss of plasticity of rabbit bone marrow mesenchymal stem cells. Cell Prolif. 2011 Feb;44(1):67-74. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003 Nov;9(11):1370-6. Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol. 2004 Sep;287(3):C572-9. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275:964-967. Baber SR, Deng W, Master RG, Bunnell BA, Taylor BK, Murthy SN, Hyman AL, Kadowitz PJ. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2007 Feb;292(2):H1120-8. Barker, JE. Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp Hematol. 1997;25:542-547. Beevers G, Lip GY, O’Brien E. ABC of hypertension: The pathophysiology of hypertension. BMJ (Clinical Research ed.). 2001 Apr 14;322(7291):912-6. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763-776. Bianchi G, Fox U, Di Francesco GF, Giovanetti AM, Pagetti D. Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med. 1974 Nov;47(5):435-48 Bianco P, Robey PG, Simmons PJ. Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays. Cell Stem Cell. 2008 Apr 10;2(4):313-9. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001 Jun 29;105(7):829-41. Bray MS, Li L, Turner ST, Kardia SL, Boerwinkle E. Association and linkage analysis of the alpha-adducin gene and blood pressure. Am J Hypertens. 2000;13:699-703. Brown VK, Ogle EW, Burkhardt AL, Rowley RB, Bolen JB, Justement LB. Multiple components of the B cell antigen receptor complex associate with the protein tyrosine phosphatase, CD45. J Biol Chem. 1994 Jun 24;269(25):17238-44. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. American Heart Association Professional Education Committee. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51:1403-1419. Caplan AI. Mesenchymal Stem Cells. In: Robert Lanza, John Gearhart, Brigid Hogan, Douglas Melton, Roger Pedersen, James Thomson and Michael West, Editor(s), Handbook of Stem Cells. Burlington: Academic Press; Vol. 2-C.28,Pages 299-308, 2004. Caplan AI. Mesenchymal Stem Cells. J Orthop Res. 1991 Sep;9(5):641-50. Caplan AI. The mesengenic process. Clin Plas Surg. 1994;21:429-435. Carothers AM, Rizvi H, Hasson RM, Heit YI, Davids JS, Bertagnolli MM, Cho NL. Mesenchymal stromal cell mutations and wound healing contribute to the etiology of desmoid tumors. Cancer Res. 2012 Jan 1;72(1):346-55. Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology. Circulation. 2000 Jan 25;101(3):329-35. Chao H, Hirschi KK. Hemato-vascular origins of endothelial progenitor cells? Microvasc Res. 2010 May;79(3):169-73. Chapleau MW, Cunningham JT, Sullivan MJ, Wachtel RE, Abboud FM. Structural versus functional modulation of the arterial baroreflex. Hypertension. 1995 Aug;26(2):341-7. Chiong JR, Aronow WS, Khan IA, Nair CK, Vijayaraghavan K, Dart RA, Behrenbeck TR, Geraci SA. Secondary hypertension: current diagnosis and treatment. Int J Cardiol. 2008 Feb 20;124(1):6-21. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DWJr, Materson BJ, Oparil S, Wrigth JTJr, Roccella EJ. For the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, National Heart, Lung and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. The Seventh Report Of The Joint National Committee On Prevention, Detection, Evaluation, And Treatment Of High Blood Pressure. Hypertension. 2003 Dec;42(6):1206-52. Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011 Nov 7;17(11):1402-9. Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005;309:1369-1373. Cowley AW Jr, Liard JF, Guyton AC. Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ Res. 1973 May;32(5):564-76. Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res. 2000;87:728-30. Crowley SD, Gurley SB, Oliverio MI, Pazmino AK, Griffiths R, Flannery PJ, Spurney RF, Kim HS, Smithies O, Le TH, Coffman TM. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest. 2005 Apr;115(4):1092-9. Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, Cowan MJ, Farzadfar F, Stevens GA, Lim SS, Riley LM, Ezzati M. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5·4 million participants. Lancet. 2011 Feb 12;377(9765):568-77. de Ciuceis C, Pilu A, Rizzoni D, Porteri E, Muiesan ML, Salvetti M, Paini A, Belotti E, Zani F, Boari GE, Rosei CA, Rosei EA. Effect of antihypertensive treatment on circulating endothelial progenitor cells in patients with mild essential hypertension. Blood Press. 2011 Apr;20(2):77-83. Delva P, Degan M, Vallerio P, Arosio E, Minuz P, Amen G, Di Chio M, Lechi A. Endothelial progenitor cells in patients with essential hypertension. J Hypertens. 2007 Jan;25(1):127-32. Dias da Silva VJ, Machado MPR, Rocha AM, Franchini KG, Voltarelli JC. Bone marrow stem/progenitor cells reduce arterial blood pressure and ameliorate endothelial dysfunction in spontaneously hypertensive rats (abstract). FASEB J. 2005;19:7439-7439. Dickout JG, Lee RM. Blood pressure and heart rate development in young spontaneously hypertensive rats. Am J Physiol. 1998 Mar;274(3 Pt 2):H794-800. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. Edwards RG. Cleavage of one- and two-celled rabbit eggs in vitro after removal of the zona pellucida. J Reprod Fertil. 1964;7:413-415. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154-156. Fazan R Jr, Dias da Silva VJ, Salgado HC. Modelos de hipertensão arterial. Rev Bras Hipertens. 2001;8:19-29. Feihl F, Liaudet L, Waeber B, Levy B. Hypertension: A Disease of the Microcirculation? Hypertension. 2006;48:1012-1017. Fey TA, Krause RA, Hsieh GC, Andrews JM, Bretheim PT, Morgan SJ, Luly JR, Mollison KW. Improved methods for transplanting split-heart neonatal cardiac grafts into the ear pinna of mice and rats. J Pharmacol Toxicol Methods. 1998 Feb;39(1):9-17. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393-403. Friedenstein AJ. Osteogenic stem cells in bone marrow. In Bone and Mineral Research, J.N.M. Heersche and J.A. Kanis, eds. Amsterdam: Elsevier; pp.243-272, 1990. Frohlich ED. The adrenergic nervous system and hypertension: State of the art. Mayo Clinic Proceedings. Mayo Clin Proc. 1977 Jun;52(6):361-8. Gage FH. Mammalian neural stem cells. Science. 2000;287:1433-1438. Ganten D, Jong W. In: Handbook of Hypertension. Elsevier Science; 1994. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good, RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet. 1968;2:1366-1369. Genetics Home Reference. Help Me Understand Genetics. Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine National, Institutes of Health Department of Health & Human Services. Handbook Gene Therapy: Published 2012 March 19;p.2-10. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005 Apr;11(4):367-8. Gonin P, Buchholz CJ, Pallardy M, Mezzina M. Gene therapy bio-safety: scientific and regulatory issues. Conference Paper. Gene Ther. 2005 Oct;12 Suppl 1:S146-52. Guilluy C, Brégeon J, Toumaniantz G, Rolli-Derkinderen M, Retailleau K, Loufrani L, Henrion D, Scalbert E, Bril A, Torres RM, Offermanns S, Pacaud P, Loirand G.The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med. 2010 Feb;16(2):183-90. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006 May;7(5):335-46. Guyton AC. Blood pressure control--special role of the kidneys and body fluids. Science. 1991 Jun 28;252(5014):1813-6. Hamano K, Li TS, Kobayashi T, Kobayashi S, Matsuzaki M, Esato K. Angiogenesis induced by the implantation of self-bone marrow cells: a new material for therapeutic angiogenesis. Cell Transplant. 2000 May-Jun;9(3):439-43. Harrison DG, Vinh A, Lob H, Madhur MS. Role of the adaptive immune system in hypertension. Curr Opin Pharmacol. 2010 Apr;10(2):203-7. Heil M, Ziegelhoeffer T, Mees B, Schaper W. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res. 2004 Mar 19;94(5):573-4. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A; International Society for Cellular Theraphy. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393-5. Huang XR, Chung AC, Yang F, Yue W, Deng C, Lau CP, Tse HF, Lan HY. Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension. 2010;55:1165-1171. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004 Jun 16;43(12 Suppl S):13S-24S. Imanishi T, Moriwaki C, Hano T, Nishio I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens. 2005;23:1831-1837. Irigoyen MC, Oliveira AR, D’ávila KAL, Fiorino P, Dall’ago P, Lacchini S. Alterações funcionais do sistema cardiovascular durante o envelhecimento. In: Jeckel-Neto EA, da Cruz IB. Aspectos biológicos e geriátricos do envelhecimento II. Porto Alegre: EDIPUCRS; p. 337-70, 2000. Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation. 2002 Feb 12;105(6):732-8. Jaenisch R, Young R. Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming. Cell. 2008 Feb 22;132(4):567-82. Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008 Jan;9(1):11-21. Judy WV, Watanabe AM, Henry DP, Besch HRJr, Murphy WR, Hockel GJ. Sympathetic nerve activity: Role in regulation of blood pressure in the spontaneously hypertensive rat. Circ Res. 1976 Jun;38(6 Suppl 2):21-9. Junquero DC, Schini VB, Scott-Burden T, Vanhoutte PM. Enhanced production of nitric oxide in aortae from spontaneously hypertensive rats by interleukin-1 beta. Am J Hypertens. 1993 Jul;6(7 Pt 1):602-10. Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, Furuya E, Katsumata T. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation. 2006 Jul 4;114(1 Suppl):I181-5. Kleinsmith RJ, Pierce GBJr. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964 Oct;24:1544-51. Kobayashi N, Delano FA, Schmid-Schonbein GW. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 2005 Oct;25(10):2114-21. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003;21,759-806. Kukharchuk OL, Radchenko VV, Sipman BM, Sahach VF. Effect of allotransplantation of embryonic pluripotent progenitor cells on dynamics of systemic arterial blood pressure in spontaneously hypertensive rats. Fiziol Zh. 2003;49(4):68-71. Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE; Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Recommendations for blood pressure measurement in humans and experimental animals: part 2: blood pressure measurement in experimental animals: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Arterioscler Thromb Vasc Biol. 2005 Mar;25(3):e22-33. Le Noble FA, Stassen FR, Hacking WJ, Struijker-Boudier HA. Angiogenesis and hypertension. J Hypertens. 1998 Nov;16(11):1563-72. Le Noble JL, Tangelder GJ, Slaaf DW, Van Essen H, Reneman RS, Struijker-Boudier HA. A functional morphometric study of the cremaster muscle microcirculation in young spontaneous hypertensive rats. J Hypertens. 1990;8:741-748. Lee CW, Huang PH, Huang SS, Leu HB, Huang CC, Wu TC, Chen JW, Lin SJ. Decreased circulating endothelial progenitor cell levels and function in essential hypertensive patients with electrocardiographic left ventricular hypertrophy. Hypertens Res. 2011 Sep;34(9):999-1003. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104:735-740. Li F, Joshua IG. Decreased arteriolar endothelium-derived relaxing factor production during the development of genetic hypertension. Clin Exp Hypertens. 1993 May;15(3):511-26. Lifton RP, Gharavi A, Geller D. Molecular mechanisms of human hypertension. Cell. 2001;104:545-556. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation. 2004 Jun 8;109(22):2692-7. Loss, IO. Terapia Celular Na Hipertensão Arterial Espontânea em Ratos. Tese de doutorado em Patologia, CPGP/UFTM, Uberaba-MG, 2011. Luft FC. Molecular genetics of human hypertension. J Hypertens. 1998;16:1871-1878. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991 Aug;84(2):482-92. Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010 Apr;90(2):513-57. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Boudier HA, Zanchetti A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Erdine S, Kiowski W, Agabiti-Rosei E, Ambrosioni E, Lindholm LH, Viigimaa M, Adamopoulos S, Agabiti-Rosei E, Ambrosioni E, Bertomeu V, Clement D, Erdine S, Farsang C, Gaita D, Lip G, Mallion JM, Manolis AJ, Nilsson PM, O'Brien E, Ponikowski P, Redon J, Ruschitzka F, Tamargo J, van Zwieten P, Waeber B, Williams B; Management of Arterial Hypertension of the European Society of Hypertension; European Society of Cardiology. 2007 Guidelines for the Management of Arterial Hypertension, The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25:1105-1187. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003 Sep;9(9):1195-201. Mason C, Manzotti E. Regen: the industry responsible for cell-based therapies. Regen Med. 2009 Nov;4(6):783-5. Mason C, Brindley DA, Culme-Seymour EJ, Davie NL. Cell therapy industry: billion dollar global business with unlimited potential. Regen Med. 2011 May;6(3):265-72. Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh KR, Ohta K, Izumi Y, Nakamura Y, Akioka K, Kitaura Y, Takeuchi K, Yoshikawa J. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2005 Jun;25(6):1168-73. Matsuzaki Y, Kinjo K, Mulligan RC, Okano H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity 2004;20:87-93. McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension: the role of superoxide anion. Hypertension. 1999;34:539-545. Meirelles Lda S, Nardi NB. Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci. 2009 Jan 1;14:4281-98. Melo LG, Gnecchi M, Pachori AS, Kong D, Wang K, Liu X, Pratt RE, Dzau VJ. Endothelium-targeted gene and cell-based therapies for cardiovascular disease. Arterioscler Thromb Vasc Biol. 2004 Oct;24(10):1761-74. Melton DA, Cowan C. “Stemness”, In: Robert Lanza, John Gearhart, Brigid Hogan, Douglas Melton, Roger Pedersen, James Thomson and Michael West, Editor(s), Handbook of Stem Stem Cells. Burlington: Academic Press; Pages xxv-xxxi, 2004. Meneton P, Jeunemaitre X, De Wardener HE, Macgregor GA. Links Between Dietary Salt Intake, Renal Salt Handling, Blood Pressure, and Cardiovascular Diseases. Physiol Rev. 2005 Apr;85(2):679-715. Moore MA. Cytokine and chemokine networks influencing stem cell proliferation, differentiation, and marrow homing. J Cell Biochem Suppl. 2002;38:29-38. Murasawa S, Asahara T. Endothelial porgenitors cells for vasculogenesis. Physiology (Bethesda). 2005 Feb;20:36-42. Murry CE, Keller G. Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic Development. Cell. 2008 Feb 22;132(4):661-80. Nafz B, Just A, Stauss HM, Wagner CD, Ehmke H, Kirchheim HR, Persson PB. Blood-pressure variability is buffered by nitric oxide. J Auton Nerv Syst. 1996 Mar 7;57(3):181-3. Nafz B, Wagner CD, Persson PB. Endogenous nitric oxide buffers blood pressure variability between 0.2 and 0.6 Hz in the conscious rat. Am J Physiol. 1997 Feb;272(2 Pt 2):H632-7. Nagaya N, Kangawa K, Kanda M, Uematsu M, Horio T, Fukuyama N, Hino J, Harada-Shiba M, Okumura H, Tabata Y, Mochizuki N, Chiba Y, Nishioka K, Miyatake K, Asahara T, Hara H, Mori H. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation. 2003 Aug 19;108(7):889-95. Nakajima S, Ohashi J, Sawada A, Noda K, Fukumoto Y, Shimokawa H. Essential Role of Bone Marrow for Microvascular Endothelial and Metabolic Functions in Mice. Circ Res. 2012 Jun 22;111(1):87-96. Neaton JD, Wentworth D. Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease. Overall findings and differences by age for 316,099 white men. Multiple Risk Factor. Intervention Trial Research Group. Arch Intern Med. 1992 Jan;152(1):56-64. Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011 Feb;12(2):126-31. Noon JP, Walker BR, Webb DJ, Shore AC, Holton DW, Edwards HV, Watt GC. Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J Clin Invest. 1997 Apr 15;99(8):1873-9. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963 Mar;27:282-93. Oliveira LF. Avaliação das Células Tronco Mesenquimais de MO em Ratos Normotensos Wistar-Kyoto (WKY) e Espontaneamente Hipertensos (SHR). Dissertação de Mestrado em Patologia. CPGP/UFTM, Uberaba-MG, 2010. Oliveira-Sales EB, Maquigussa E, Semedo P, Guilhermino LP, Camara NOS, Bergamaschi CT, Boim M, Campos RR. Mesenchymal stem cells decrease AT1 receptor in the RVLM and the hypertension in 2K-1C Wistar rats. Autonomic Neuroscience, Volume 163, Issues 1-2, 1 September 2011, Pages 82-83. Oskowitz A, McFerrin H, Gutschow M, Carter ML, Pochampally R. Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res. 2011 May; 6(3):215-25. Pagani M, Somers V, Furlan R, Dell'Orto S, Conway J, Baselli G, Cerutti S, Sleight P, Malliani A. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988 Dec;12(6):600-10. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belém L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003 May 13;107(18):2294-302. Persson PB. The kidney and hypertension. Am J Physiol Regul Integr Comp Physiol. 2003 May;284(5):R1176-8. Pillow RP, Epstein RB, Buckner CD, Giblett ER, Thomas ED. Treatment of bone-marrow failure by isogeneic marrow infusion. N Engl J Med. 1966;275:94-97. Potts JT, Mckeown KP, Shoukas AA. Reduction in arterial compliance alters carotid baroreflex control of cardiac output in a model of hypertension. Am J Physiol. 1998 Apr;274(4 Pt 2):H1121-31. Prewitt RL, Chen II, Dowell R. Development of microvascular rarefaction in the spontaneously hypertensive rat. Am J Physiol. 1982 Aug;243(2):H243-51. Psaty BM, Smith NL, Heckbert SR, Vos HL, Lemaitre RN, Reiner AP, Siscovick DS, Bis J, Lumley T, Longstreth WT Jr, Rosendaal FR. Diuretic therapy, the alpha-adducin gene variant, and the risk of myocardial infarction or stroke in persons with treated hypertension. JAMA. 2002 Apr 3;287(13):1680-9. Raff M. Adult Stem Cell Plasticity: Fact or Artifact? Annu Rev Cell Dev Biol. 2003;19:1-22. Rettig R, Grisk O. The kidney as a determinant of genetic hypertension: evidence from renal transplantation studies. Hypertension. 2005 Sep;46(3):463-8. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, Kruger M, Dimmeler S, Marra F, Gensini G, Maggi E, Romagnani S. CD14+CD34low Cells With Stem Cell Phenotypic and Functional Features Are the Major Source of Circulating Endothelial Progenitors. Circ Res. 2005 Aug 19;97(4):314-22. Rossant J. Stem Cells and Early Lineage Development. Cell. 2008 Feb 22;132(4):527-31. Rubini R, Porta A, Baselli G, Cerutti S, Paro M. Power spectrum analysis of cardiovascular variability monitored by telemetry in conscious unrestrained rats. J Auton Nerv Syst. 1993 Dec;45(3):181-90. Sanchez RA, Ayala M, Baglivo H, Velazquez C, Burlando G, Kohlmann O, Jimenez J, Jaramillo PL, Brandao A, Valdes G, Alcocer L, BenderskY M, Ramirez AJ, Zanchetti A. Latin America guidelines on hypertension. On Behalf Of The Latin America Expert Group. J Hypertens. 2009;27(5):905-922. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7-25. Sever PS, Poulter NR. A hypothesis for the pathogenesis of essential hypertension: the initiating factors. J Hypertens Suppl. 1989 Feb;7(1):S9-12. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92:362-367. Smallegange C, Hale TM, Bushfield TL, Adams MA. Persistent lowering of pressure by transplanting kidneys from adult spontaneously hypertensive rats treated with brief antihypertensive therapy. Hypertension. 2004 Jul;44(1):89-94. Smallegange C, Kline RL, Adams MA. Transplantation of enalapril-treated kidneys confers persistent lowering of arterial pressure in SHR. Hypertension. 2003 Nov;42(5):932-6. Smith TL, Hutchins PM. Central hemodynamics in the developmental stage of spontaneous hypertension in the unanesthetized rat. Hypertension. 1979;1:508-517. Soloviev A, Prudnikov I, Tsyvkin V, Tishkin S, Kyrychenko S, Zelensky S, Ivanova I. Electrophysiological and contractile evidence of the ability of human mesenchymal stromal cells to correct vascular malfunction in rats after ionizing irradiation. J Physiol Sci. 2010 Mar;60(2):161-72. Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch Intern Med. 1993 Mar 8;153(5):598-615. Stauss HM, Gödecke A, Mrowka R, Schrader J, Persson PB. Enhanced blood pressure variability in eNOS knockout mice. Hypertension. 1999 Jun;33(6):1359-63. Stauss HM, Persson PB. Role of Nitric Oxide in Buffering Short-Term Blood Pressure Fluctuations. News Physiol Sci. 2000 Oct;15:229-233. Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation. 2003;107:929-934. Sullivan JM, Prewitt RL, Josephs JA. Attenuation of the microcirculation in young patients with high-output borderline hypertension. Hypertension. 1983;5:844-851. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30;131(5):861-72. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006 Aug 25;126(4):663-76. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996 Mar 1;93(5):1043-65. Thomas CJ, Rankin AJ, Head GA, Woods RL. ANP enhances bradycardic reflexes in normotensive but not spontaneously hypertensive rats. Hypertension. 1997;5:1126-32. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6;282(5391):1145-7. Till JE, McCulloch CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213-22. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44:248-252. Travassoli M, Crosby WH. Transplantation of marrow to extramedullary sites. Science. 1968 Jul 5;161(3836):54-6. Trippodo NC, Frohlich ED. Similarities of Genetic (Spontaneous) Hypertension. Circ Res. 1981 Mar;48(3):309-19. Tsonis PA. Bridging Knowledge Gaps on the Long Road to Regeneration: Classical Models Meet Stem Cell Manipulation and Bioengineering. Mol Interv. 2007 Oct;7(5):249-50. Umans JG, Levi R. Nitric oxide in the regulation of blood flow and arterial pressure. Annu Rev Physiol. 1995;57:771-90. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004 Aug 20;95(4):343-53. Verfaillie CM. Hematopoietic stem cells for transplantation. Nat Immunol. 2002;3:314-317. Wang H, Olszewski B, Rosebury W, Wang D, Robertson A, Keiser JA. Impaired angiogenesis in SHR is associated with decreased KDR and MT1-MMP expression. Biochem Biophys Res Commun. 2004 Mar 5;315(2):363-8. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol. 2011 Sep 2;12(10):643-55. Williams RR, Hunt SC, Hopkins PN, Hasstedt SJ, Wu LL, Lalouel JM. Tabulations and expectations regarding the genetics of human hypertension. Kidney Int Suppl. 1994 Jan;44:S57-64. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810-813. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cells niches. Nat Rev Immunol. 2006 Feb;6(2):93-106. World Health Organization. Causes of Death 2008: Data Sources and Methods. Department Of Health Statistics And Informatics. Geneva; April 2011a. World Health Organization. Global Atlas on Cardiovascular Disease Prevention and Control. Geneva; 2011b. World Health Organization. Global Health Risks: Mortality and burden of disease attributable to selected major risks. Geneva; 2009. World Heart Organization. Global Status Report On Noncommunicable Diseases 2010. Geneva; 2010. Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, Zhou H, Chen Y. Mesenchymal Stem Cells from Adult Human Bone Marrow Differentiate into a Cardiomyocyte Phenotype In Vitro. Exp Biol Med (Maywood). 2004 Jul;229(7):623-31. Yamori Y. Development of the spontaneously hypertensive rat (SHR) and of various spontaneous rat models, and their implications. In: De Jong W (ed.). Experimental and Genetic Models of Hypertension. Handbook of Hypertension. Elsevier, 1984;224-39. Yoder MC. Defining human endothelial progenitor cells. J Thromb Haemost. 2009 Jul;7 Suppl 1:49-52. Yoon YS, Wecker A, Heyd L, Park JS, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha DH, Johnson KL, Aikawa R, Asahara T, Losordo DW. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest. 2005 Feb;115(2):326-38. Zipori D. The nature of stem cells: state rather than entity. Nat Rev Genet. 2004 Nov;5(11):873-8. Zubair AC, Silberstein L, Ritz J. Adult hematopoietic stem cell plasticity. Transfusion. 2002 Aug;42(8):1096-1101. Zulli A, Buxton BF, Black MJ, Hare DL. CD34 Class III positive cells are present in atherosclerotic plaques of the rabbit model of atherosclerosis. Histochem Cell Biol. 2005 Dec;124(6):517-22.http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-06-26T20:03:51Zoai:bdtd.uftm.edu.br:tede/181Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2019-06-26T20:03:51Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false |
dc.title.none.fl_str_mv |
Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos |
title |
Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos |
spellingShingle |
Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos ALMEIDA, Thalles Ramos Medula óssea Transplante de medula óssea Células da medula óssea Hipertensão Bone marrow Bone marrow transplantation Bone marrow cells Hypertension Biologia Geral |
title_short |
Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos |
title_full |
Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos |
title_fullStr |
Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos |
title_full_unstemmed |
Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos |
title_sort |
Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos |
author |
ALMEIDA, Thalles Ramos |
author_facet |
ALMEIDA, Thalles Ramos |
author_role |
author |
dc.contributor.none.fl_str_mv |
SILVA, Valdo José Dias da 640.030.516-53 http://lattes.cnpq.br/4763314549493316 |
dc.contributor.author.fl_str_mv |
ALMEIDA, Thalles Ramos |
dc.subject.por.fl_str_mv |
Medula óssea Transplante de medula óssea Células da medula óssea Hipertensão Bone marrow Bone marrow transplantation Bone marrow cells Hypertension Biologia Geral |
topic |
Medula óssea Transplante de medula óssea Células da medula óssea Hipertensão Bone marrow Bone marrow transplantation Bone marrow cells Hypertension Biologia Geral |
description |
No presente estudo, os efeitos do transplante de células mononucleares (TMN) extraídas de medula óssea de ratos espontaneamente hipertensos (SHR) adultos (Ad) ou jovens (Jv) isogênicos ou de ratos Wistar-Kyoto (WKY) normotensos alogênicos sobre os níveis de pressão arterial sistêmica de SHRs fêmeas foram avaliados. Células mononucleares de medula óssea foram retiradas de tíbias, fêmurs e úmeros de SHRs doadores machos isogênicos adultos (de 16 semanas de idade, TMN-Ad, n=4) ou jovens (de 4 semanas de idade, TMN-Jv, n=2) ou de ratos WKY normotensos (de 16 semanas de idade, TMN-WKY, n=2) e injetadas (5x106 cels./rato, i.v.) em SHRs receptoras fêmeas de 16-20 semanas de idade (grupos TMN-Ad, n=10, TMN-Jv, n=7 e TMN-WKY, n=7). As células mononucleares foram marcadas com o corante fluorescente celltracker CM-DiI, previamente à administração. Ratas SHRs fêmeas, recebendo apenas o veículo, formaram o grupo controle (CON, n=15). Pressão arterial (PA) indireta foi registrada diariamente ou a cada dois dias por meio do método de oclusão da artéria caudal por uma semana antes até duas semanas, após o transplante em todos os grupos experimentais. No final desse período, após prévia canulação (24-48 horas antes), todos os animais foram submetidos ao registro direto da pressão arterial pulsátil por 01 hora, em condições estáveis e de repouso. Em seguida, posteriormente à anestesia com pentobarbital sódico, os animais foram eutanasiados. Concluído o sacrifício, microscopia de fluorescência foi realizada em cortes histológicos teciduais dos órgãos removidos, incluindo rins, baço, pulmões e coração, a fim de se verificar a presença de células de SHR doadores (celltracker CM-DiI+). Em ambos os grupos submetidos ao transplante isogênico (TMN-Ad e TMN-Jv), a PA foi reduzida após o terceiro dia, permanecendo baixa até o final do período de observação. Confirmando estes achados, os valores de PA média avaliados por meio de medida direta foram de 137±4mmHg no grupo TMN-Ad e 136±3mmHg no grupo TMN-Jv (versus 163±5mmHg no grupo CON, p<0.005). Em adição, nenhuma diferença nos parâmetros de variabilidade da frequência cardíaca e na sensibilidade barorreflexa espontânea foram observadas entre os grupos, enquanto que a variância, o componente VLF (very low frequency) e o componente LF (low frequency) da variabilidade da pressão arterial foram significativamente reduzidos, em ambos os grupos TMN-Ad e TMN-Jv. Também se observou uma diminuição na hipertrofia cardíaca, provavelmente pela redução da sobrecarga hemodinâmica imposta ao ventrículo esquerdo. Não foram observadas modificações na densidade glomerular nos grupos TMN-Jv e TMN-Ad, comparados ao grupo CON. Pequenas quantidades de células foram encontradas em vários tecidos, incluindo os rins, enquanto um grande número de células estava marcadamente presente no baço dos animais que receberam transplante isogênico. Por outro lado, nas SHRs submetidas ao transplante alogênico com células de ratos WKY (grupo TMN-WKY), ao final do período de observação, nenhuma queda da PA foi observada. Em concordância, a PA média direta medida nos animais TMN-WKY não diferiu dos respectivos animais controles. Nenhuma modificação foi observada na variabilidade cardiovascular, sensibilidade barorreflexa, hipertrofia cardíaca e densidade glomerular dos animais TMN-WKY. No transplante alogênico, células WKY transplantadas foram encontradas apenas no baço, sugerindo rejeição das células. Esses achados sugerem que o transplante de células mononucleares de medula óssea isogênica, em animais imunocompetentes, de diferentes idades é capaz de reduzir a pressão arterial associada à hipertensão arterial sistêmica. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08-01 2015-12-08T17:16:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ALMEIDA, Thalles Ramos. Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos. 2012. 99F. Dissertação (Mestrado em Ciências Fisiológicas) - Curso de Pós-Graduação em Ciências Fisiológicas - Bioquímica, Fisiologia e Farmacologia, Universidade Federal do Triângulo Mineiro, Uberaba, 2012. http://bdtd.uftm.edu.br/handle/tede/181 |
identifier_str_mv |
ALMEIDA, Thalles Ramos. Efeitos do transplante de células mononucleares de medula óssea na hipertensão espontânea em ratos. 2012. 99F. Dissertação (Mestrado em Ciências Fisiológicas) - Curso de Pós-Graduação em Ciências Fisiológicas - Bioquímica, Fisiologia e Farmacologia, Universidade Federal do Triângulo Mineiro, Uberaba, 2012. |
url |
http://bdtd.uftm.edu.br/handle/tede/181 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Abboud FM, Harwani SC, Chapleau MW. Autonomic Neural Regulation of the Immune System Implications for Hypertension and Cardiovascular Disease. Hypertension. 2012;59(4):755-62. Ahmadbeigi N, Shafiee A, Seyedjafari E, Gheisari Y, Vassei M, Amanpour S, Amini S, Bagherizadeh I, Soleimani M. Early spontaneous immortalization and loss of plasticity of rabbit bone marrow mesenchymal stem cells. Cell Prolif. 2011 Feb;44(1):67-74. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003 Nov;9(11):1370-6. Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol. 2004 Sep;287(3):C572-9. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275:964-967. Baber SR, Deng W, Master RG, Bunnell BA, Taylor BK, Murthy SN, Hyman AL, Kadowitz PJ. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2007 Feb;292(2):H1120-8. Barker, JE. Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp Hematol. 1997;25:542-547. Beevers G, Lip GY, O’Brien E. ABC of hypertension: The pathophysiology of hypertension. BMJ (Clinical Research ed.). 2001 Apr 14;322(7291):912-6. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763-776. Bianchi G, Fox U, Di Francesco GF, Giovanetti AM, Pagetti D. Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med. 1974 Nov;47(5):435-48 Bianco P, Robey PG, Simmons PJ. Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays. Cell Stem Cell. 2008 Apr 10;2(4):313-9. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001 Jun 29;105(7):829-41. Bray MS, Li L, Turner ST, Kardia SL, Boerwinkle E. Association and linkage analysis of the alpha-adducin gene and blood pressure. Am J Hypertens. 2000;13:699-703. Brown VK, Ogle EW, Burkhardt AL, Rowley RB, Bolen JB, Justement LB. Multiple components of the B cell antigen receptor complex associate with the protein tyrosine phosphatase, CD45. J Biol Chem. 1994 Jun 24;269(25):17238-44. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. American Heart Association Professional Education Committee. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51:1403-1419. Caplan AI. Mesenchymal Stem Cells. In: Robert Lanza, John Gearhart, Brigid Hogan, Douglas Melton, Roger Pedersen, James Thomson and Michael West, Editor(s), Handbook of Stem Cells. Burlington: Academic Press; Vol. 2-C.28,Pages 299-308, 2004. Caplan AI. Mesenchymal Stem Cells. J Orthop Res. 1991 Sep;9(5):641-50. Caplan AI. The mesengenic process. Clin Plas Surg. 1994;21:429-435. Carothers AM, Rizvi H, Hasson RM, Heit YI, Davids JS, Bertagnolli MM, Cho NL. Mesenchymal stromal cell mutations and wound healing contribute to the etiology of desmoid tumors. Cancer Res. 2012 Jan 1;72(1):346-55. Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology. Circulation. 2000 Jan 25;101(3):329-35. Chao H, Hirschi KK. Hemato-vascular origins of endothelial progenitor cells? Microvasc Res. 2010 May;79(3):169-73. Chapleau MW, Cunningham JT, Sullivan MJ, Wachtel RE, Abboud FM. Structural versus functional modulation of the arterial baroreflex. Hypertension. 1995 Aug;26(2):341-7. Chiong JR, Aronow WS, Khan IA, Nair CK, Vijayaraghavan K, Dart RA, Behrenbeck TR, Geraci SA. Secondary hypertension: current diagnosis and treatment. Int J Cardiol. 2008 Feb 20;124(1):6-21. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DWJr, Materson BJ, Oparil S, Wrigth JTJr, Roccella EJ. For the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, National Heart, Lung and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. The Seventh Report Of The Joint National Committee On Prevention, Detection, Evaluation, And Treatment Of High Blood Pressure. Hypertension. 2003 Dec;42(6):1206-52. Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011 Nov 7;17(11):1402-9. Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005;309:1369-1373. Cowley AW Jr, Liard JF, Guyton AC. Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ Res. 1973 May;32(5):564-76. Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res. 2000;87:728-30. Crowley SD, Gurley SB, Oliverio MI, Pazmino AK, Griffiths R, Flannery PJ, Spurney RF, Kim HS, Smithies O, Le TH, Coffman TM. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest. 2005 Apr;115(4):1092-9. Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, Cowan MJ, Farzadfar F, Stevens GA, Lim SS, Riley LM, Ezzati M. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5·4 million participants. Lancet. 2011 Feb 12;377(9765):568-77. de Ciuceis C, Pilu A, Rizzoni D, Porteri E, Muiesan ML, Salvetti M, Paini A, Belotti E, Zani F, Boari GE, Rosei CA, Rosei EA. Effect of antihypertensive treatment on circulating endothelial progenitor cells in patients with mild essential hypertension. Blood Press. 2011 Apr;20(2):77-83. Delva P, Degan M, Vallerio P, Arosio E, Minuz P, Amen G, Di Chio M, Lechi A. Endothelial progenitor cells in patients with essential hypertension. J Hypertens. 2007 Jan;25(1):127-32. Dias da Silva VJ, Machado MPR, Rocha AM, Franchini KG, Voltarelli JC. Bone marrow stem/progenitor cells reduce arterial blood pressure and ameliorate endothelial dysfunction in spontaneously hypertensive rats (abstract). FASEB J. 2005;19:7439-7439. Dickout JG, Lee RM. Blood pressure and heart rate development in young spontaneously hypertensive rats. Am J Physiol. 1998 Mar;274(3 Pt 2):H794-800. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. Edwards RG. Cleavage of one- and two-celled rabbit eggs in vitro after removal of the zona pellucida. J Reprod Fertil. 1964;7:413-415. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154-156. Fazan R Jr, Dias da Silva VJ, Salgado HC. Modelos de hipertensão arterial. Rev Bras Hipertens. 2001;8:19-29. Feihl F, Liaudet L, Waeber B, Levy B. Hypertension: A Disease of the Microcirculation? Hypertension. 2006;48:1012-1017. Fey TA, Krause RA, Hsieh GC, Andrews JM, Bretheim PT, Morgan SJ, Luly JR, Mollison KW. Improved methods for transplanting split-heart neonatal cardiac grafts into the ear pinna of mice and rats. J Pharmacol Toxicol Methods. 1998 Feb;39(1):9-17. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393-403. Friedenstein AJ. Osteogenic stem cells in bone marrow. In Bone and Mineral Research, J.N.M. Heersche and J.A. Kanis, eds. Amsterdam: Elsevier; pp.243-272, 1990. Frohlich ED. The adrenergic nervous system and hypertension: State of the art. Mayo Clinic Proceedings. Mayo Clin Proc. 1977 Jun;52(6):361-8. Gage FH. Mammalian neural stem cells. Science. 2000;287:1433-1438. Ganten D, Jong W. In: Handbook of Hypertension. Elsevier Science; 1994. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good, RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet. 1968;2:1366-1369. Genetics Home Reference. Help Me Understand Genetics. Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine National, Institutes of Health Department of Health & Human Services. Handbook Gene Therapy: Published 2012 March 19;p.2-10. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005 Apr;11(4):367-8. Gonin P, Buchholz CJ, Pallardy M, Mezzina M. Gene therapy bio-safety: scientific and regulatory issues. Conference Paper. Gene Ther. 2005 Oct;12 Suppl 1:S146-52. Guilluy C, Brégeon J, Toumaniantz G, Rolli-Derkinderen M, Retailleau K, Loufrani L, Henrion D, Scalbert E, Bril A, Torres RM, Offermanns S, Pacaud P, Loirand G.The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med. 2010 Feb;16(2):183-90. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006 May;7(5):335-46. Guyton AC. Blood pressure control--special role of the kidneys and body fluids. Science. 1991 Jun 28;252(5014):1813-6. Hamano K, Li TS, Kobayashi T, Kobayashi S, Matsuzaki M, Esato K. Angiogenesis induced by the implantation of self-bone marrow cells: a new material for therapeutic angiogenesis. Cell Transplant. 2000 May-Jun;9(3):439-43. Harrison DG, Vinh A, Lob H, Madhur MS. Role of the adaptive immune system in hypertension. Curr Opin Pharmacol. 2010 Apr;10(2):203-7. Heil M, Ziegelhoeffer T, Mees B, Schaper W. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res. 2004 Mar 19;94(5):573-4. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A; International Society for Cellular Theraphy. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393-5. Huang XR, Chung AC, Yang F, Yue W, Deng C, Lau CP, Tse HF, Lan HY. Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension. 2010;55:1165-1171. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004 Jun 16;43(12 Suppl S):13S-24S. Imanishi T, Moriwaki C, Hano T, Nishio I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens. 2005;23:1831-1837. Irigoyen MC, Oliveira AR, D’ávila KAL, Fiorino P, Dall’ago P, Lacchini S. Alterações funcionais do sistema cardiovascular durante o envelhecimento. In: Jeckel-Neto EA, da Cruz IB. Aspectos biológicos e geriátricos do envelhecimento II. Porto Alegre: EDIPUCRS; p. 337-70, 2000. Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation. 2002 Feb 12;105(6):732-8. Jaenisch R, Young R. Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming. Cell. 2008 Feb 22;132(4):567-82. Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008 Jan;9(1):11-21. Judy WV, Watanabe AM, Henry DP, Besch HRJr, Murphy WR, Hockel GJ. Sympathetic nerve activity: Role in regulation of blood pressure in the spontaneously hypertensive rat. Circ Res. 1976 Jun;38(6 Suppl 2):21-9. Junquero DC, Schini VB, Scott-Burden T, Vanhoutte PM. Enhanced production of nitric oxide in aortae from spontaneously hypertensive rats by interleukin-1 beta. Am J Hypertens. 1993 Jul;6(7 Pt 1):602-10. Kanki-Horimoto S, Horimoto H, Mieno S, Kishida K, Watanabe F, Furuya E, Katsumata T. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation. 2006 Jul 4;114(1 Suppl):I181-5. Kleinsmith RJ, Pierce GBJr. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964 Oct;24:1544-51. Kobayashi N, Delano FA, Schmid-Schonbein GW. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 2005 Oct;25(10):2114-21. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003;21,759-806. Kukharchuk OL, Radchenko VV, Sipman BM, Sahach VF. Effect of allotransplantation of embryonic pluripotent progenitor cells on dynamics of systemic arterial blood pressure in spontaneously hypertensive rats. Fiziol Zh. 2003;49(4):68-71. Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE; Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Recommendations for blood pressure measurement in humans and experimental animals: part 2: blood pressure measurement in experimental animals: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Arterioscler Thromb Vasc Biol. 2005 Mar;25(3):e22-33. Le Noble FA, Stassen FR, Hacking WJ, Struijker-Boudier HA. Angiogenesis and hypertension. J Hypertens. 1998 Nov;16(11):1563-72. Le Noble JL, Tangelder GJ, Slaaf DW, Van Essen H, Reneman RS, Struijker-Boudier HA. A functional morphometric study of the cremaster muscle microcirculation in young spontaneous hypertensive rats. J Hypertens. 1990;8:741-748. Lee CW, Huang PH, Huang SS, Leu HB, Huang CC, Wu TC, Chen JW, Lin SJ. Decreased circulating endothelial progenitor cell levels and function in essential hypertensive patients with electrocardiographic left ventricular hypertrophy. Hypertens Res. 2011 Sep;34(9):999-1003. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104:735-740. Li F, Joshua IG. Decreased arteriolar endothelium-derived relaxing factor production during the development of genetic hypertension. Clin Exp Hypertens. 1993 May;15(3):511-26. Lifton RP, Gharavi A, Geller D. Molecular mechanisms of human hypertension. Cell. 2001;104:545-556. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation. 2004 Jun 8;109(22):2692-7. Loss, IO. Terapia Celular Na Hipertensão Arterial Espontânea em Ratos. Tese de doutorado em Patologia, CPGP/UFTM, Uberaba-MG, 2011. Luft FC. Molecular genetics of human hypertension. J Hypertens. 1998;16:1871-1878. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991 Aug;84(2):482-92. Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010 Apr;90(2):513-57. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Boudier HA, Zanchetti A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Filippatos G, Funck-Brentano C, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Zamorano JL, Erdine S, Kiowski W, Agabiti-Rosei E, Ambrosioni E, Lindholm LH, Viigimaa M, Adamopoulos S, Agabiti-Rosei E, Ambrosioni E, Bertomeu V, Clement D, Erdine S, Farsang C, Gaita D, Lip G, Mallion JM, Manolis AJ, Nilsson PM, O'Brien E, Ponikowski P, Redon J, Ruschitzka F, Tamargo J, van Zwieten P, Waeber B, Williams B; Management of Arterial Hypertension of the European Society of Hypertension; European Society of Cardiology. 2007 Guidelines for the Management of Arterial Hypertension, The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25:1105-1187. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003 Sep;9(9):1195-201. Mason C, Manzotti E. Regen: the industry responsible for cell-based therapies. Regen Med. 2009 Nov;4(6):783-5. Mason C, Brindley DA, Culme-Seymour EJ, Davie NL. Cell therapy industry: billion dollar global business with unlimited potential. Regen Med. 2011 May;6(3):265-72. Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh KR, Ohta K, Izumi Y, Nakamura Y, Akioka K, Kitaura Y, Takeuchi K, Yoshikawa J. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2005 Jun;25(6):1168-73. Matsuzaki Y, Kinjo K, Mulligan RC, Okano H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity 2004;20:87-93. McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension: the role of superoxide anion. Hypertension. 1999;34:539-545. Meirelles Lda S, Nardi NB. Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci. 2009 Jan 1;14:4281-98. Melo LG, Gnecchi M, Pachori AS, Kong D, Wang K, Liu X, Pratt RE, Dzau VJ. Endothelium-targeted gene and cell-based therapies for cardiovascular disease. Arterioscler Thromb Vasc Biol. 2004 Oct;24(10):1761-74. Melton DA, Cowan C. “Stemness”, In: Robert Lanza, John Gearhart, Brigid Hogan, Douglas Melton, Roger Pedersen, James Thomson and Michael West, Editor(s), Handbook of Stem Stem Cells. Burlington: Academic Press; Pages xxv-xxxi, 2004. Meneton P, Jeunemaitre X, De Wardener HE, Macgregor GA. Links Between Dietary Salt Intake, Renal Salt Handling, Blood Pressure, and Cardiovascular Diseases. Physiol Rev. 2005 Apr;85(2):679-715. Moore MA. Cytokine and chemokine networks influencing stem cell proliferation, differentiation, and marrow homing. J Cell Biochem Suppl. 2002;38:29-38. Murasawa S, Asahara T. Endothelial porgenitors cells for vasculogenesis. Physiology (Bethesda). 2005 Feb;20:36-42. Murry CE, Keller G. Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic Development. Cell. 2008 Feb 22;132(4):661-80. Nafz B, Just A, Stauss HM, Wagner CD, Ehmke H, Kirchheim HR, Persson PB. Blood-pressure variability is buffered by nitric oxide. J Auton Nerv Syst. 1996 Mar 7;57(3):181-3. Nafz B, Wagner CD, Persson PB. Endogenous nitric oxide buffers blood pressure variability between 0.2 and 0.6 Hz in the conscious rat. Am J Physiol. 1997 Feb;272(2 Pt 2):H632-7. Nagaya N, Kangawa K, Kanda M, Uematsu M, Horio T, Fukuyama N, Hino J, Harada-Shiba M, Okumura H, Tabata Y, Mochizuki N, Chiba Y, Nishioka K, Miyatake K, Asahara T, Hara H, Mori H. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation. 2003 Aug 19;108(7):889-95. Nakajima S, Ohashi J, Sawada A, Noda K, Fukumoto Y, Shimokawa H. Essential Role of Bone Marrow for Microvascular Endothelial and Metabolic Functions in Mice. Circ Res. 2012 Jun 22;111(1):87-96. Neaton JD, Wentworth D. Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease. Overall findings and differences by age for 316,099 white men. Multiple Risk Factor. Intervention Trial Research Group. Arch Intern Med. 1992 Jan;152(1):56-64. Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011 Feb;12(2):126-31. Noon JP, Walker BR, Webb DJ, Shore AC, Holton DW, Edwards HV, Watt GC. Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J Clin Invest. 1997 Apr 15;99(8):1873-9. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963 Mar;27:282-93. Oliveira LF. Avaliação das Células Tronco Mesenquimais de MO em Ratos Normotensos Wistar-Kyoto (WKY) e Espontaneamente Hipertensos (SHR). Dissertação de Mestrado em Patologia. CPGP/UFTM, Uberaba-MG, 2010. Oliveira-Sales EB, Maquigussa E, Semedo P, Guilhermino LP, Camara NOS, Bergamaschi CT, Boim M, Campos RR. Mesenchymal stem cells decrease AT1 receptor in the RVLM and the hypertension in 2K-1C Wistar rats. Autonomic Neuroscience, Volume 163, Issues 1-2, 1 September 2011, Pages 82-83. Oskowitz A, McFerrin H, Gutschow M, Carter ML, Pochampally R. Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res. 2011 May; 6(3):215-25. Pagani M, Somers V, Furlan R, Dell'Orto S, Conway J, Baselli G, Cerutti S, Sleight P, Malliani A. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988 Dec;12(6):600-10. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belém L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003 May 13;107(18):2294-302. Persson PB. The kidney and hypertension. Am J Physiol Regul Integr Comp Physiol. 2003 May;284(5):R1176-8. Pillow RP, Epstein RB, Buckner CD, Giblett ER, Thomas ED. Treatment of bone-marrow failure by isogeneic marrow infusion. N Engl J Med. 1966;275:94-97. Potts JT, Mckeown KP, Shoukas AA. Reduction in arterial compliance alters carotid baroreflex control of cardiac output in a model of hypertension. Am J Physiol. 1998 Apr;274(4 Pt 2):H1121-31. Prewitt RL, Chen II, Dowell R. Development of microvascular rarefaction in the spontaneously hypertensive rat. Am J Physiol. 1982 Aug;243(2):H243-51. Psaty BM, Smith NL, Heckbert SR, Vos HL, Lemaitre RN, Reiner AP, Siscovick DS, Bis J, Lumley T, Longstreth WT Jr, Rosendaal FR. Diuretic therapy, the alpha-adducin gene variant, and the risk of myocardial infarction or stroke in persons with treated hypertension. JAMA. 2002 Apr 3;287(13):1680-9. Raff M. Adult Stem Cell Plasticity: Fact or Artifact? Annu Rev Cell Dev Biol. 2003;19:1-22. Rettig R, Grisk O. The kidney as a determinant of genetic hypertension: evidence from renal transplantation studies. Hypertension. 2005 Sep;46(3):463-8. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, Kruger M, Dimmeler S, Marra F, Gensini G, Maggi E, Romagnani S. CD14+CD34low Cells With Stem Cell Phenotypic and Functional Features Are the Major Source of Circulating Endothelial Progenitors. Circ Res. 2005 Aug 19;97(4):314-22. Rossant J. Stem Cells and Early Lineage Development. Cell. 2008 Feb 22;132(4):527-31. Rubini R, Porta A, Baselli G, Cerutti S, Paro M. Power spectrum analysis of cardiovascular variability monitored by telemetry in conscious unrestrained rats. J Auton Nerv Syst. 1993 Dec;45(3):181-90. Sanchez RA, Ayala M, Baglivo H, Velazquez C, Burlando G, Kohlmann O, Jimenez J, Jaramillo PL, Brandao A, Valdes G, Alcocer L, BenderskY M, Ramirez AJ, Zanchetti A. Latin America guidelines on hypertension. On Behalf Of The Latin America Expert Group. J Hypertens. 2009;27(5):905-922. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7-25. Sever PS, Poulter NR. A hypothesis for the pathogenesis of essential hypertension: the initiating factors. J Hypertens Suppl. 1989 Feb;7(1):S9-12. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92:362-367. Smallegange C, Hale TM, Bushfield TL, Adams MA. Persistent lowering of pressure by transplanting kidneys from adult spontaneously hypertensive rats treated with brief antihypertensive therapy. Hypertension. 2004 Jul;44(1):89-94. Smallegange C, Kline RL, Adams MA. Transplantation of enalapril-treated kidneys confers persistent lowering of arterial pressure in SHR. Hypertension. 2003 Nov;42(5):932-6. Smith TL, Hutchins PM. Central hemodynamics in the developmental stage of spontaneous hypertension in the unanesthetized rat. Hypertension. 1979;1:508-517. Soloviev A, Prudnikov I, Tsyvkin V, Tishkin S, Kyrychenko S, Zelensky S, Ivanova I. Electrophysiological and contractile evidence of the ability of human mesenchymal stromal cells to correct vascular malfunction in rats after ionizing irradiation. J Physiol Sci. 2010 Mar;60(2):161-72. Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch Intern Med. 1993 Mar 8;153(5):598-615. Stauss HM, Gödecke A, Mrowka R, Schrader J, Persson PB. Enhanced blood pressure variability in eNOS knockout mice. Hypertension. 1999 Jun;33(6):1359-63. Stauss HM, Persson PB. Role of Nitric Oxide in Buffering Short-Term Blood Pressure Fluctuations. News Physiol Sci. 2000 Oct;15:229-233. Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation. 2003;107:929-934. Sullivan JM, Prewitt RL, Josephs JA. Attenuation of the microcirculation in young patients with high-output borderline hypertension. Hypertension. 1983;5:844-851. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30;131(5):861-72. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006 Aug 25;126(4):663-76. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996 Mar 1;93(5):1043-65. Thomas CJ, Rankin AJ, Head GA, Woods RL. ANP enhances bradycardic reflexes in normotensive but not spontaneously hypertensive rats. Hypertension. 1997;5:1126-32. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6;282(5391):1145-7. Till JE, McCulloch CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213-22. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44:248-252. Travassoli M, Crosby WH. Transplantation of marrow to extramedullary sites. Science. 1968 Jul 5;161(3836):54-6. Trippodo NC, Frohlich ED. Similarities of Genetic (Spontaneous) Hypertension. Circ Res. 1981 Mar;48(3):309-19. Tsonis PA. Bridging Knowledge Gaps on the Long Road to Regeneration: Classical Models Meet Stem Cell Manipulation and Bioengineering. Mol Interv. 2007 Oct;7(5):249-50. Umans JG, Levi R. Nitric oxide in the regulation of blood flow and arterial pressure. Annu Rev Physiol. 1995;57:771-90. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004 Aug 20;95(4):343-53. Verfaillie CM. Hematopoietic stem cells for transplantation. Nat Immunol. 2002;3:314-317. Wang H, Olszewski B, Rosebury W, Wang D, Robertson A, Keiser JA. Impaired angiogenesis in SHR is associated with decreased KDR and MT1-MMP expression. Biochem Biophys Res Commun. 2004 Mar 5;315(2):363-8. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol. 2011 Sep 2;12(10):643-55. Williams RR, Hunt SC, Hopkins PN, Hasstedt SJ, Wu LL, Lalouel JM. Tabulations and expectations regarding the genetics of human hypertension. Kidney Int Suppl. 1994 Jan;44:S57-64. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810-813. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cells niches. Nat Rev Immunol. 2006 Feb;6(2):93-106. World Health Organization. Causes of Death 2008: Data Sources and Methods. Department Of Health Statistics And Informatics. Geneva; April 2011a. World Health Organization. Global Atlas on Cardiovascular Disease Prevention and Control. Geneva; 2011b. World Health Organization. Global Health Risks: Mortality and burden of disease attributable to selected major risks. Geneva; 2009. World Heart Organization. Global Status Report On Noncommunicable Diseases 2010. Geneva; 2010. Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, Zhou H, Chen Y. Mesenchymal Stem Cells from Adult Human Bone Marrow Differentiate into a Cardiomyocyte Phenotype In Vitro. Exp Biol Med (Maywood). 2004 Jul;229(7):623-31. Yamori Y. Development of the spontaneously hypertensive rat (SHR) and of v |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Triângulo Mineiro Instituto de Ciências da Saúde - ICS::Curso de Medicina Brasil UFTM Curso de Pós-Graduação em Ciências Fisiológicas |
publisher.none.fl_str_mv |
Universidade Federal do Triângulo Mineiro Instituto de Ciências da Saúde - ICS::Curso de Medicina Brasil UFTM Curso de Pós-Graduação em Ciências Fisiológicas |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFTM instname:Universidade Federal do Triangulo Mineiro (UFTM) instacron:UFTM |
instname_str |
Universidade Federal do Triangulo Mineiro (UFTM) |
instacron_str |
UFTM |
institution |
UFTM |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFTM |
collection |
Biblioteca Digital de Teses e Dissertações da UFTM |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM) |
repository.mail.fl_str_mv |
bdtd@uftm.edu.br||bdtd@uftm.edu.br |
_version_ |
1813013329709367296 |