ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica

Detalhes bibliográficos
Autor(a) principal: TAVARES, Eduardo Henrique
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
Texto Completo: http://bdtd.uftm.edu.br/handle/tede/551
Resumo: A distribuição topográfica dos neurônios eferentes vagais vem sendo estudada principalmente pelo uso de traçadores retrógrados aplicados aos segmentos específicos de órgãos ou parte proximal de nervos seccionados. O objetivo deste trabalho foi avaliar se a expressão induzida de marcadores de lesão pode ser usada no estudo da distribuição e código químico no núcleo dorsal motor do nervo vago (DMV). Para este fim, ratos foram submetidos à secção de um dos três ramos do vago subdiafragmático anterior. Cinco dias após a axotomia os ratos foram perfundidos e reações de imunofluorescência realizadas para os marcadores de lesão: fator 3 ativador da transcrição (ATF-3), nestina e proteína 43 associada ao crescimento (GAP-43), bem como para marcadores neuronais: colina acetiltransferase (ChAT), tirosina hidroxilase (TH), óxido nítrico sintase neuronal (nNOS). A vagotomia periférica resultou em um rápido aumento na expressão de ATF-3, mas não de nestina ou GAP-43. Usando o traçador retrógrado toxina colérica subunidade  foi estimado que 95,2± 0,7% dos neurônios do DMV respondem à vagotomia com um aumento na marcação anti-ATF-3. O número de neurônios que projetam pelos ramos gástrico anterior, hepático e acessório celíaco alcança um máximo nos níveis 33, 3 e 121 m, respectivamente. O ramo gástrico anterior está representado medialmente, o acessório celíaco lateralmente e o ramo hepático homogeneamente no DMV. A marcação anti-TH ocorreu exclusivamente em neurônios que projetam pelo ramo gástrico anterior. Foi observado um aumento significativo na porcentagem de neurônios nNOS positivos após axotomia. Dessa forma, a expressão induzida do ATF-3 é uma ferramenta útil na análise da distribuição de neurônios autonômicos não mielinizados.
id UFTM_ea68594eb83b1e6549f1fc665dda8d8c
oai_identifier_str oai:bdtd.uftm.edu.br:tede/551
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
spelling ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periféricaNúcleo dorsal motor do nervo vago.ATF-3.Axotomia.Dorsal motor nucleus of vagus nerve.ATF-3.Axotomy.Ciências BiológicasA distribuição topográfica dos neurônios eferentes vagais vem sendo estudada principalmente pelo uso de traçadores retrógrados aplicados aos segmentos específicos de órgãos ou parte proximal de nervos seccionados. O objetivo deste trabalho foi avaliar se a expressão induzida de marcadores de lesão pode ser usada no estudo da distribuição e código químico no núcleo dorsal motor do nervo vago (DMV). Para este fim, ratos foram submetidos à secção de um dos três ramos do vago subdiafragmático anterior. Cinco dias após a axotomia os ratos foram perfundidos e reações de imunofluorescência realizadas para os marcadores de lesão: fator 3 ativador da transcrição (ATF-3), nestina e proteína 43 associada ao crescimento (GAP-43), bem como para marcadores neuronais: colina acetiltransferase (ChAT), tirosina hidroxilase (TH), óxido nítrico sintase neuronal (nNOS). A vagotomia periférica resultou em um rápido aumento na expressão de ATF-3, mas não de nestina ou GAP-43. Usando o traçador retrógrado toxina colérica subunidade  foi estimado que 95,2± 0,7% dos neurônios do DMV respondem à vagotomia com um aumento na marcação anti-ATF-3. O número de neurônios que projetam pelos ramos gástrico anterior, hepático e acessório celíaco alcança um máximo nos níveis 33, 3 e 121 m, respectivamente. O ramo gástrico anterior está representado medialmente, o acessório celíaco lateralmente e o ramo hepático homogeneamente no DMV. A marcação anti-TH ocorreu exclusivamente em neurônios que projetam pelo ramo gástrico anterior. Foi observado um aumento significativo na porcentagem de neurônios nNOS positivos após axotomia. Dessa forma, a expressão induzida do ATF-3 é uma ferramenta útil na análise da distribuição de neurônios autonômicos não mielinizados.The topographical distribution of vagal efferent neurons has been studied mainly by the use of retrograde tracers applied to specific segments of organs or proximal part of severed nerves. The aim of this study was to evaluate whether the induced expression of lesion markers can be used to study the distribution and the chemical code of dorsal motor nucleus of vagus nerve (DMV). To this end, rats were submitted to section of one of the three branches of the anterior subdiaphragmatic vagus. Five days after axotomy, rats were perfused and immunofluorescence reactions performed for lesions markers: activating transcriptional factor 3 (ATF-3), nestin and Growth associated proteins 43 (GAP-43), as well as for neuronal markers: choline acetyltransferase (ChAT), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS). Peripheral vagotomy resulted in a rapid increase in ATF-3 expression but not for nestin or GAP-43. Using the retrograde tracer choleric toxin  subunit it was estimated that 95.2 ± 0.7% of DMV neurons respond to vagotomy with an increase in antiATF-3 labeling. The anterior gastric, hepatic and accessory celiac branch neurons reached a maximum number at the level 33, 3 and 121 m, respectively. The anterior gastric branch is represented medially, the accessory celiac laterally and the hepatic branch homogeneously at DMV. The anti-TH labeling occurred exclusively in anterior gastric projecting neurons. It was observed a significant increase in the percentage of positive nNOS neurons after axotomy. Therefore, the induced expression of ATF-3 is a useful tool for analysis of distribution of unmyelinated autonomic neurons.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal do Triângulo MineiroInstituto de Ciências da Saúde - ICS::Curso de MedicinaBrasilUFTMPrograma de Pós-Graduação em Ciências FisiológicasRODRIGUES, Aldo Rogelis Aquiles83546448634http://lattes.cnpq.br/6645292290768657TAVARES, Eduardo Henrique2018-05-02T20:25:07Z2016-11-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfTAVARES, Eduardo Henrique. ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica. 2016. 58f. Dissertação (Mestrado em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2016.http://bdtd.uftm.edu.br/handle/tede/551porAbankwa D, Küry P, Müller HW. Dynamic changes in gene expression profiles following axotomy of projection fibres in the Mammalian CNS. Mol Cell Neurosci 21(3):421-435, 2002. Abe N, Cavalli V. Nerve injury signaling. Curr Opin Neurobiol 18(3):276-83, 2008. Aldskogius H, Barron KD, Regal R. Axon reaction in dorsal motor vagal and hypoglossal neurons of the adult rat. Light microscopy and RNA-cytochemistry. J Comp Neurol 193(1):165-177, 1980. Aldskogius H, Barron KD, Regal R. Axon reaction in hypoglossal and dorsal motor vagal neurons of adult rat: incorporation of [3H]leucine. Exp Neurol 85(1):139-151, 1984. Armstrong DM, Ross CA, Pickel VM, Joh TH, Reis DJ. Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J Comp Neurol 212(2):173-187, 1982. Barron KD, McGuinness CM, Misantone LJ, Zanakis MF, Grafstein B, Murray M. RNA content of normal and axotomized retinal ganglion cells of rat and goldfish. J Comp Neurol 236(2):265-73, 1985. Beckstead RM, Morse JR, Norgren R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 190(2):259-82, 1980. Berthoud HR, Carlson NR, Powley TL. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol 260(1):200-207, 1991. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 85(1-3):1-17, 2000. Boeshore KL, Schreiber RC, Vaccariello SA, Sachs HH, Salazar R, Lee J, Ratan RR, Leahy P, Zigmond RE. Novel changes in gene expression following axotomy of a sympathetic ganglion: a microarray analysis. J Neurobiol 59(2):216-235, 2004. Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4(4):1339-68, 2014. Champagnat J, Denavit-Saubié M, Grant K, Shen KF. Organization of synaptic transmission in the mammalian solitary complex, studied in vitro. J Physiol 381(1):551-573, 1986. Chen BP, Liang G, Whelan J, Hai T. ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem 269(22):15819-15826, 1994.9 Chen BP, Wolfgang CD, Hai T. Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol 16(3):1157-1168, 1996. Chong MS, Fitzgerald M, Winter J, Hu-Tsai M, Emson PC, Wiese U, Woolf CJ. GAP-43 mRNA in Rat Spinal Cord and Dorsal Root Ganglia Neurons: Developmental Changes and Re-expression Following Peripheral Nerve Injury. Eur J Neurosci 4(10):883-895, 1992. Contreras RJ, Gomez MM, Norgren R. Central origins of cranial nerve parasympathetic neurons in the rat. J Comp Neurol 190(2):373 -394, 1980 Curran T, Morgan JI. Memories of fos. Bioessays 7(6):255-258, 1987. De la Monte SM, Federoff HJ, Ng SC, Grabczyk E, Fishman MC. GAP-43 gene expression during development: persistence in a distinctive set of neurons in the mature central nervous system. Brain Res Dev Brain Res 46(2):161-168, 1989. Dennison SJ, Merritt VE, Aprison MH, Felten DL. Redefinition of the location of the dorsal (motor) nucleus of the vagus in the rat. Brain Res Bull 6(1):77-81, 1981a. Ellison JP, Clark GM. Retrograde Axonal Transport of Horseradish Peroxidase in Peripheral Autonomic Nerves. J Comp Neur 161(1):103-13, 1975. Fogel R, Zhang X, Renehan WE. Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. J Comp Neurol 364(1):78-91, 1996. Fox EA, Powley TL. Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Res 341(2):269–282, 1985. Fox EA, Powley TL. Morphology of identified preganglionic neurons in the dorsal motor nucleus of the vagus. J Comp Neurol 322(1):79-98, 1992. Gabella G, Pease HL. Number of axons in the abdominal vagus of the rat. Brain Research 58(2): 465-469, 1973. Gao H, Glatzer NR, Williams KW, Derbenev AV, Liu D, Smith BN. Morphological and electrophysiological features of motor neurons and putative interneurons in the dorsal vagal complex of rats and mice. Brain Res 1291:40-52, 2009. Greenberg ME, Ziff EB. Stimulation of 3T3 cells induces transcription of the c-fos protooncogene. Nature 311(5985):433-438, 1984. Guo JJ, Browning KN, Rogers RC, Travagli RA. Catecholaminergic neurons in rat dorsal motor nucleus of vagus project selectively to gastric corpus. Am J Physiol Gastrointest Liver Physiol 280(3):361-367, 2001. Haas CA, Donath C, Kreutzberg GW. Differential expression of immediate early genes after transection of the facial nerve. Neuroscience 53(1):91-99, 1993.10 Hanz S, Fainzilber M. Retrograde signaling in injured nerve--the axon reaction revisited. J Neurochem 99(1):13-19, 2006. Hayakawa T, Takanaga A, Tanaka K, Maeda S, Seki M. Distribution and ultrastructure of dopaminergic neurons in the dorsal motor nucleus of the vagus projecting to the stomach of the rat. Brain Res 1006(1):66-73, 2004. Helke CJ, Handelmann GE, Jacobowitz DM. Choline acetyltransferase activity in the nucleus tractus solitarius: regulation by the afferent vagus nerve. Brain Res Bull 10(4):433-436, 1983. Herdegen T, Skene P, Bähr M. The c-Jun transcription factor--bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 20(5):227-31, 1997. Hoover DB, Barron SE. Localization and Acetylcholinesterase Content of Vagal Efferent Neurons. Brain Res Bull 8(3):279–284, 1982. Hoover DB, Hancock JC, DePorter TE. Effect of vagotomy on cholinergic parameters in nuclei of rat medulla oblongata. Brain Res Bull 15(1):5-11, 1985. Hopkins DA, Bieger D, deVente J, Steinbusch WM. Vagal efferent projections: viscerotopy, neurochemistry and effects of vagotomy. Prog Brain Res 107:79-96, 1996. Hsu JC, Bravo R, Taub R. Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol 12(10):4654-4665, 1992. Hsu JC, Laz T, Mohn KL, Taub R. Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci U S A 88(9):3511-3515, 1991. Hunt D, Raivich G, Anderson PN. Activating transcription factor 3 and the nervous system. Front Mol Neurosci 5:7, 2012. Jarvinen MK, Powley TL. Dorsal motor nucleus of the vagus neurons: a multivariate taxonomy. J Comp Neurol 403(3):359-377, 1999. Jenkins R, Hunt SP. Long-term increase in the levels of c-jun mRNA and jun protein-like immunoreactivity in motor and sensory neurons following axon damage. Neurosci Lett 129(1):107-110, 1991. Jenkins R, Tetzlaff W, Hunt SP. Differential expression of immediate early genes in rubrospinal neurons following axotomy in rat. Eur J Neurosci 5(3):203-9, 1993. Kalia M, Sullivan JM. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211(3):248-65, 1982. Koliatsos VE, Price DL. Axotomy as an experimental model of neuronal injury and cell death. Brain Pathol 6(4):447-465, 1996.11 Kuo LT, Simpson A, Schänzer A, Tse J, An SF, Scaravilli F, Groves MJ. Effects of systemically administered NT-3 on sensory neuron loss and nestin expression following axotomy. J Comp Neurol 482(4):320-332, 2005. Lalli E, Sassone-Corsi P. Signal transduction and gene regulation: the nuclear response to cAMP. J Biol Chem 269(26):17359-17362, 1994. Lams BE, Isacson O, Sofroniew MV. Loss of transmitter-associated enzyme staining following axotomy does not indicate death of brainstem cholinergic neurons. Brain Res 475(2):401-406, 1988. Lau LF, Nathans D. Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A 84(5): 1182– 1186, 1987. Lee EJ, Kim KY, Gu TH, Moon JI, Kim IB, Lee MY, Oh SJ, Chun MH. Neuronal nitric oxide synthase is expressed in the axotomized ganglion cells of the rat retina. Brain Res 986(1- 2):174-180, 2003. Legros G, Griffith CA. The abdominal vagal system in rats. An anatomical study with emphasis upon the distribution of the gastric vagi to the stomach. J Surg Res 9(3):183-6, 1969. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585-595, 1990. Levine J; Skene P; Willard M. GAPs and fodrin: Novel axonally transported proteins. Trends in Neurosciences 4:273–277, 1981. Lewis PR, Scott JA, Navaratnam V. Localization in the dorsal motor nucleus of the vagus in the rat. J Anat 107(2): 197-208, 1970. Liang L, Wang Z, Lü N, Yang J, Zhang Y, Zhao Z. Involvement of nerve injury and activation of peripheral glial cells in tetanic sciatic stimulation-induced persistent pain in rats. J Neurosci Res 88(13):2899-28910, 2010. Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T. ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem 271(3):1695-701, 1996. Lorenz T, Willard M. Subcellular fractionation of intra-axonally transport polypeptides in the rabbit visual system. Proc Natl Acad Sci U S A 75(1):505-9, 1978. McLean JH, Hopkins DA. A light and electron microscopic study of the dorsal motor nucleus of the vagus nerve in the cat. J Comp Neurol 195(1):157-175, 1981. McLean JH, Hopkins DA. Ultrastructural identification of labeled neurons in the dorsal motor nucleus of the vagus nerve following injections of horseradish peroxidase into the vagus nerve and brainstem. J Comp Neurol 206(3):243-252, 1982.12 M'hamed SB, Sequeira H, Poulain P, Bennis M, Roy JC. Sensorimotor cortex projections to the ventrolateral and the dorsomedial medulla oblongata in the rat. Neurosci Lett 164(1- 2):195-198, 1993. Misher A, Brooks FP. Electrical stimulation of hypothalamus and gastric secretion in the albino rat. Am J Physiol 211: 403-406, 1966. Morest DK. Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J Comp Neurol 130(4):277-300, 1967. Nanobashvili JD, Stacher G, Windberger U, Dudczak R, Liegl C, Gorgadze V, Losert U, Heinzl H, Neumayer C. Regenerative potential of abdominal vagal nerves in rats. Am J Physiol 266(1):G140-G146, 1994. Norgren R. Projections from the nucleus of the solitary tract in the rat. Neuroscience 3(2):207-218, 1978. Norgren R, Smith GP. Central distribution of subdiaphragmatic vagal branches in the rat. J Comp Neurol 273(2):207-223, 1988. Nosaka S. Electrophysiologic identification of preganglionic neurons in rat dorsal motor nucleus and analysis of vagus afferent projections. Exp Neurol 91(2): 366-381, 1986. Okumura T, Namiki M. Vagal motor neurons innervating the stomach are site-specifically organized in the dorsal motor nucleus of the vagus nerve in rats. J Auton Nerv Syst 29(2):157- 162, 1990. Patel JI, Gentleman SM, Jen LS, Garey LJ. Nitric oxide synthase in developing retinas and after optic tract section. Brain Res 761(1):156-160, 1997. Prechtl JC, Powley TL. A light and electron microscopic examination of the vagal hepatic branch of the rat. Anat Embryol 176, (1): 115–126, 1987. Prechtl JC, Powley TL. Organization and distribution of the rat subdiaphragmatic vagus and associated paraganglia. J Comp Neurol 235(2):182-195, 1985. Powley TL, Fox EA, Berthoud HR. Retrograde tracer technique for assessment of selective and total subdiaphragmatic vagotomies. Am J Physiol 253(2):361-370, 1987. Powley TL, Prechtl JC, Fox EA, Berthoud HR. Anatomical considerations for surgery of the rat abdominal vagus: distribution, paraganglia and regeneration. J Auton Nerv Syst 9(1):79-97, 1983. Rishal I, Fainzilber M. Retrograde signaling in axonal regeneration. Exp Neurol 223(1):5-10, 2010. Sheng M, Greenberg ME. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4(4):477-485, 1990.13 Shin AC, Zheng H, Berthoud HR. Vagal innervation of the hepatic portal vein and liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia, weight loss, and hypermetabolism. Ann Surg 255(2):294-301, 2012. Shokouhi BN, Wong BZ, Siddiqui S, Lieberman AR, Campbell G, Tohyama K, Anderson PN. Microglial responses around intrinsic CNS neurons are correlated with axonal regeneration. BMC Neurosci 11:13, 2010. Siaud P, Puech R, Assenmacher I, Alonso G. Adrenergic innervation of the dorsal vagal motor nucleus: possible involvement in inhibitory control of gastric acid and pancreatic insulin secretion. Cell Tissue Res 259(3):535-542, 1990. Skene JH, Willard M. Electrophoretic analysis of axonally transported proteins in toad retinal ganglion cells. J Neurochem 37(1):79-87, 1981a. Skene JH, Willard M. Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J Cell Biol 89(1):86-95, 1981b. Skene JH, Willard M. Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J Cell Biol 89(1):96-103, 1981c. Skene JH, Willard M. Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons. J Neurosci 1(4):419-426, 1981d. Smith GP, Jerome C. Effects of total and selective abdominal vagotomies on water intake in rats. J Auton Nerv Syst 9(1):259-271, 1983. Sterner MR, Fox EA, Powley TL. A retrograde tracer strategy using True Blue to label the preganglionic parasympathetic innervation of the abdominal viscera. J Neurosci Methods 14(4):273-280,1985. Stimpson CD, Tetreault NA, Allman JM, Jacobs B, Butti C, Hof PR, Sherwood CC. Biochemical specificity of von Economo neurons in hominoids. Am J Hum Biol 23(1):22-8, 2011. Sugitani A, Yoshida J, Nyhus LM, Donahue PE. Viscerotopic representation of preganglionic efferent vagus nerve in the brainstem of the rat: a Fluoro-Gold study. J Auton Nerv Syst 34(2- 3):211-219, 1991. Schwaber JS, Kapp BS, Higgins G. The origin and extent of direct amygdala projections to the region of the dorsal motor nucleus of the vagus and the nucleus of the solitary tract. Neurosci Lett 20(1):15-20, 1980. Takaoka T, Shiotani A, Saito K, Tomifuji M, Mori Y, Fujimine T, Okano H, Ogawa K. Neuronal re-juvenilization in the nucleus ambiguus after vagal nerve injury. Neurosci Res 65(4):353-359, 2009. Takeuchi Y, Matsushima S, Matsushima R, Hopkins DA. Direct amygdaloid projections to the dorsal motor nucleus of the vagus nerve: a light and electron microscopic study in the rat. Brain Res 280(1):143-7, 1983.14 Takayama K, Ishikawa N, Miura M. Sites of origin and termination of gastric vagus preganglionic neurons: an HRP study in the rat. J Auton Nerv Syst 6(2):211-223, 1982. ter Horst GJ, Luiten PG, Kuipers F. Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J Auton Nerv Syst 11(1):59-75, 1984. Tetzlaff W, Alexander SW, Miller FD, Bisby MA. Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 11(8):2528-2544, 1991. Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 15(2):170-182, 2000. Tsukamoto K, Hayakawa T, Maeda S, Tanaka K, Seki M, Yamamura T. Projections to the alimentary canal from the dopaminergic neurons in the dorsal motor nucleus of the vagus of the rat. Auton Neurosci 123(1-2):12-18, 2005. Uno T, Shogaki K, Bamba H, Koike S, Naruse Y, Ijima N, Tanaka M, Hisa Y. Growth associated protein-43 mRNA expression in nucleus ambiguus motoneurons after recurrent laryngeal nerve injury in the rat. Acta Otolaryngol 123(2):292-296, 2003. Wang FB, Young YK, Kao CK. Abdominal vagal afferent pathways and their distributions of intraganglionic laminar endings in the rat duodenum. J Comp Neurol 520(5):1098-1113, 2012. Woolf CJ, Reynolds ML, Molander C, O'Brien C, Lindsay RM, Benowitz LI. The growthassociated protein GAP-43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury. Neuroscience 34(2):465-478, 1990. Yang M, Zhao X, Miselis RR. The origin of catecholaminergic nerve fibers in the subdiaphragmatic vagus nerve of rat. J Auton Nerv Syst 76(2-3):108-117, 1999. Zhang X, Fogel R, Renehan WE. Physiology and morphology of neurons in the dorsal motor nucleus of the vagus and the nucleus of the solitary tract that are sensitive to distension of the small intestine. J Comp Neurol 323(3):432-448, 1992. Zhang XY, Ai HB, Cui XY. Effects of nuclei ambiguus and dorsal motor nuclei of vagus on gastric H+ and HCO3- secretion in rats. World J Gastroenterol 12(20): 3271–3274, 2006http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-06-26T19:14:43Zoai:bdtd.uftm.edu.br:tede/551Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2019-06-26T19:14:43Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
dc.title.none.fl_str_mv ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica
title ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica
spellingShingle ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica
TAVARES, Eduardo Henrique
Núcleo dorsal motor do nervo vago.
ATF-3.
Axotomia.
Dorsal motor nucleus of vagus nerve.
ATF-3.
Axotomy.
Ciências Biológicas
title_short ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica
title_full ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica
title_fullStr ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica
title_full_unstemmed ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica
title_sort ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica
author TAVARES, Eduardo Henrique
author_facet TAVARES, Eduardo Henrique
author_role author
dc.contributor.none.fl_str_mv RODRIGUES, Aldo Rogelis Aquiles
83546448634
http://lattes.cnpq.br/6645292290768657
dc.contributor.author.fl_str_mv TAVARES, Eduardo Henrique
dc.subject.por.fl_str_mv Núcleo dorsal motor do nervo vago.
ATF-3.
Axotomia.
Dorsal motor nucleus of vagus nerve.
ATF-3.
Axotomy.
Ciências Biológicas
topic Núcleo dorsal motor do nervo vago.
ATF-3.
Axotomia.
Dorsal motor nucleus of vagus nerve.
ATF-3.
Axotomy.
Ciências Biológicas
description A distribuição topográfica dos neurônios eferentes vagais vem sendo estudada principalmente pelo uso de traçadores retrógrados aplicados aos segmentos específicos de órgãos ou parte proximal de nervos seccionados. O objetivo deste trabalho foi avaliar se a expressão induzida de marcadores de lesão pode ser usada no estudo da distribuição e código químico no núcleo dorsal motor do nervo vago (DMV). Para este fim, ratos foram submetidos à secção de um dos três ramos do vago subdiafragmático anterior. Cinco dias após a axotomia os ratos foram perfundidos e reações de imunofluorescência realizadas para os marcadores de lesão: fator 3 ativador da transcrição (ATF-3), nestina e proteína 43 associada ao crescimento (GAP-43), bem como para marcadores neuronais: colina acetiltransferase (ChAT), tirosina hidroxilase (TH), óxido nítrico sintase neuronal (nNOS). A vagotomia periférica resultou em um rápido aumento na expressão de ATF-3, mas não de nestina ou GAP-43. Usando o traçador retrógrado toxina colérica subunidade  foi estimado que 95,2± 0,7% dos neurônios do DMV respondem à vagotomia com um aumento na marcação anti-ATF-3. O número de neurônios que projetam pelos ramos gástrico anterior, hepático e acessório celíaco alcança um máximo nos níveis 33, 3 e 121 m, respectivamente. O ramo gástrico anterior está representado medialmente, o acessório celíaco lateralmente e o ramo hepático homogeneamente no DMV. A marcação anti-TH ocorreu exclusivamente em neurônios que projetam pelo ramo gástrico anterior. Foi observado um aumento significativo na porcentagem de neurônios nNOS positivos após axotomia. Dessa forma, a expressão induzida do ATF-3 é uma ferramenta útil na análise da distribuição de neurônios autonômicos não mielinizados.
publishDate 2016
dc.date.none.fl_str_mv 2016-11-21
2018-05-02T20:25:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv TAVARES, Eduardo Henrique. ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica. 2016. 58f. Dissertação (Mestrado em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2016.
http://bdtd.uftm.edu.br/handle/tede/551
identifier_str_mv TAVARES, Eduardo Henrique. ATF-3 como marcador de lesão e de padrões topográficos em neurônios autonômicos do núcleo dorsal motor do nervo vago após axotomia periférica. 2016. 58f. Dissertação (Mestrado em Ciências Fisiológicas) - Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, 2016.
url http://bdtd.uftm.edu.br/handle/tede/551
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Abankwa D, Küry P, Müller HW. Dynamic changes in gene expression profiles following axotomy of projection fibres in the Mammalian CNS. Mol Cell Neurosci 21(3):421-435, 2002. Abe N, Cavalli V. Nerve injury signaling. Curr Opin Neurobiol 18(3):276-83, 2008. Aldskogius H, Barron KD, Regal R. Axon reaction in dorsal motor vagal and hypoglossal neurons of the adult rat. Light microscopy and RNA-cytochemistry. J Comp Neurol 193(1):165-177, 1980. Aldskogius H, Barron KD, Regal R. Axon reaction in hypoglossal and dorsal motor vagal neurons of adult rat: incorporation of [3H]leucine. Exp Neurol 85(1):139-151, 1984. Armstrong DM, Ross CA, Pickel VM, Joh TH, Reis DJ. Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J Comp Neurol 212(2):173-187, 1982. Barron KD, McGuinness CM, Misantone LJ, Zanakis MF, Grafstein B, Murray M. RNA content of normal and axotomized retinal ganglion cells of rat and goldfish. J Comp Neurol 236(2):265-73, 1985. Beckstead RM, Morse JR, Norgren R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 190(2):259-82, 1980. Berthoud HR, Carlson NR, Powley TL. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol 260(1):200-207, 1991. Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 85(1-3):1-17, 2000. Boeshore KL, Schreiber RC, Vaccariello SA, Sachs HH, Salazar R, Lee J, Ratan RR, Leahy P, Zigmond RE. Novel changes in gene expression following axotomy of a sympathetic ganglion: a microarray analysis. J Neurobiol 59(2):216-235, 2004. Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4(4):1339-68, 2014. Champagnat J, Denavit-Saubié M, Grant K, Shen KF. Organization of synaptic transmission in the mammalian solitary complex, studied in vitro. J Physiol 381(1):551-573, 1986. Chen BP, Liang G, Whelan J, Hai T. ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem 269(22):15819-15826, 1994.9 Chen BP, Wolfgang CD, Hai T. Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol 16(3):1157-1168, 1996. Chong MS, Fitzgerald M, Winter J, Hu-Tsai M, Emson PC, Wiese U, Woolf CJ. GAP-43 mRNA in Rat Spinal Cord and Dorsal Root Ganglia Neurons: Developmental Changes and Re-expression Following Peripheral Nerve Injury. Eur J Neurosci 4(10):883-895, 1992. Contreras RJ, Gomez MM, Norgren R. Central origins of cranial nerve parasympathetic neurons in the rat. J Comp Neurol 190(2):373 -394, 1980 Curran T, Morgan JI. Memories of fos. Bioessays 7(6):255-258, 1987. De la Monte SM, Federoff HJ, Ng SC, Grabczyk E, Fishman MC. GAP-43 gene expression during development: persistence in a distinctive set of neurons in the mature central nervous system. Brain Res Dev Brain Res 46(2):161-168, 1989. Dennison SJ, Merritt VE, Aprison MH, Felten DL. Redefinition of the location of the dorsal (motor) nucleus of the vagus in the rat. Brain Res Bull 6(1):77-81, 1981a. Ellison JP, Clark GM. Retrograde Axonal Transport of Horseradish Peroxidase in Peripheral Autonomic Nerves. J Comp Neur 161(1):103-13, 1975. Fogel R, Zhang X, Renehan WE. Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. J Comp Neurol 364(1):78-91, 1996. Fox EA, Powley TL. Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Res 341(2):269–282, 1985. Fox EA, Powley TL. Morphology of identified preganglionic neurons in the dorsal motor nucleus of the vagus. J Comp Neurol 322(1):79-98, 1992. Gabella G, Pease HL. Number of axons in the abdominal vagus of the rat. Brain Research 58(2): 465-469, 1973. Gao H, Glatzer NR, Williams KW, Derbenev AV, Liu D, Smith BN. Morphological and electrophysiological features of motor neurons and putative interneurons in the dorsal vagal complex of rats and mice. Brain Res 1291:40-52, 2009. Greenberg ME, Ziff EB. Stimulation of 3T3 cells induces transcription of the c-fos protooncogene. Nature 311(5985):433-438, 1984. Guo JJ, Browning KN, Rogers RC, Travagli RA. Catecholaminergic neurons in rat dorsal motor nucleus of vagus project selectively to gastric corpus. Am J Physiol Gastrointest Liver Physiol 280(3):361-367, 2001. Haas CA, Donath C, Kreutzberg GW. Differential expression of immediate early genes after transection of the facial nerve. Neuroscience 53(1):91-99, 1993.10 Hanz S, Fainzilber M. Retrograde signaling in injured nerve--the axon reaction revisited. J Neurochem 99(1):13-19, 2006. Hayakawa T, Takanaga A, Tanaka K, Maeda S, Seki M. Distribution and ultrastructure of dopaminergic neurons in the dorsal motor nucleus of the vagus projecting to the stomach of the rat. Brain Res 1006(1):66-73, 2004. Helke CJ, Handelmann GE, Jacobowitz DM. Choline acetyltransferase activity in the nucleus tractus solitarius: regulation by the afferent vagus nerve. Brain Res Bull 10(4):433-436, 1983. Herdegen T, Skene P, Bähr M. The c-Jun transcription factor--bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 20(5):227-31, 1997. Hoover DB, Barron SE. Localization and Acetylcholinesterase Content of Vagal Efferent Neurons. Brain Res Bull 8(3):279–284, 1982. Hoover DB, Hancock JC, DePorter TE. Effect of vagotomy on cholinergic parameters in nuclei of rat medulla oblongata. Brain Res Bull 15(1):5-11, 1985. Hopkins DA, Bieger D, deVente J, Steinbusch WM. Vagal efferent projections: viscerotopy, neurochemistry and effects of vagotomy. Prog Brain Res 107:79-96, 1996. Hsu JC, Bravo R, Taub R. Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol 12(10):4654-4665, 1992. Hsu JC, Laz T, Mohn KL, Taub R. Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci U S A 88(9):3511-3515, 1991. Hunt D, Raivich G, Anderson PN. Activating transcription factor 3 and the nervous system. Front Mol Neurosci 5:7, 2012. Jarvinen MK, Powley TL. Dorsal motor nucleus of the vagus neurons: a multivariate taxonomy. J Comp Neurol 403(3):359-377, 1999. Jenkins R, Hunt SP. Long-term increase in the levels of c-jun mRNA and jun protein-like immunoreactivity in motor and sensory neurons following axon damage. Neurosci Lett 129(1):107-110, 1991. Jenkins R, Tetzlaff W, Hunt SP. Differential expression of immediate early genes in rubrospinal neurons following axotomy in rat. Eur J Neurosci 5(3):203-9, 1993. Kalia M, Sullivan JM. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211(3):248-65, 1982. Koliatsos VE, Price DL. Axotomy as an experimental model of neuronal injury and cell death. Brain Pathol 6(4):447-465, 1996.11 Kuo LT, Simpson A, Schänzer A, Tse J, An SF, Scaravilli F, Groves MJ. Effects of systemically administered NT-3 on sensory neuron loss and nestin expression following axotomy. J Comp Neurol 482(4):320-332, 2005. Lalli E, Sassone-Corsi P. Signal transduction and gene regulation: the nuclear response to cAMP. J Biol Chem 269(26):17359-17362, 1994. Lams BE, Isacson O, Sofroniew MV. Loss of transmitter-associated enzyme staining following axotomy does not indicate death of brainstem cholinergic neurons. Brain Res 475(2):401-406, 1988. Lau LF, Nathans D. Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A 84(5): 1182– 1186, 1987. Lee EJ, Kim KY, Gu TH, Moon JI, Kim IB, Lee MY, Oh SJ, Chun MH. Neuronal nitric oxide synthase is expressed in the axotomized ganglion cells of the rat retina. Brain Res 986(1- 2):174-180, 2003. Legros G, Griffith CA. The abdominal vagal system in rats. An anatomical study with emphasis upon the distribution of the gastric vagi to the stomach. J Surg Res 9(3):183-6, 1969. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585-595, 1990. Levine J; Skene P; Willard M. GAPs and fodrin: Novel axonally transported proteins. Trends in Neurosciences 4:273–277, 1981. Lewis PR, Scott JA, Navaratnam V. Localization in the dorsal motor nucleus of the vagus in the rat. J Anat 107(2): 197-208, 1970. Liang L, Wang Z, Lü N, Yang J, Zhang Y, Zhao Z. Involvement of nerve injury and activation of peripheral glial cells in tetanic sciatic stimulation-induced persistent pain in rats. J Neurosci Res 88(13):2899-28910, 2010. Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T. ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem 271(3):1695-701, 1996. Lorenz T, Willard M. Subcellular fractionation of intra-axonally transport polypeptides in the rabbit visual system. Proc Natl Acad Sci U S A 75(1):505-9, 1978. McLean JH, Hopkins DA. A light and electron microscopic study of the dorsal motor nucleus of the vagus nerve in the cat. J Comp Neurol 195(1):157-175, 1981. McLean JH, Hopkins DA. Ultrastructural identification of labeled neurons in the dorsal motor nucleus of the vagus nerve following injections of horseradish peroxidase into the vagus nerve and brainstem. J Comp Neurol 206(3):243-252, 1982.12 M'hamed SB, Sequeira H, Poulain P, Bennis M, Roy JC. Sensorimotor cortex projections to the ventrolateral and the dorsomedial medulla oblongata in the rat. Neurosci Lett 164(1- 2):195-198, 1993. Misher A, Brooks FP. Electrical stimulation of hypothalamus and gastric secretion in the albino rat. Am J Physiol 211: 403-406, 1966. Morest DK. Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J Comp Neurol 130(4):277-300, 1967. Nanobashvili JD, Stacher G, Windberger U, Dudczak R, Liegl C, Gorgadze V, Losert U, Heinzl H, Neumayer C. Regenerative potential of abdominal vagal nerves in rats. Am J Physiol 266(1):G140-G146, 1994. Norgren R. Projections from the nucleus of the solitary tract in the rat. Neuroscience 3(2):207-218, 1978. Norgren R, Smith GP. Central distribution of subdiaphragmatic vagal branches in the rat. J Comp Neurol 273(2):207-223, 1988. Nosaka S. Electrophysiologic identification of preganglionic neurons in rat dorsal motor nucleus and analysis of vagus afferent projections. Exp Neurol 91(2): 366-381, 1986. Okumura T, Namiki M. Vagal motor neurons innervating the stomach are site-specifically organized in the dorsal motor nucleus of the vagus nerve in rats. J Auton Nerv Syst 29(2):157- 162, 1990. Patel JI, Gentleman SM, Jen LS, Garey LJ. Nitric oxide synthase in developing retinas and after optic tract section. Brain Res 761(1):156-160, 1997. Prechtl JC, Powley TL. A light and electron microscopic examination of the vagal hepatic branch of the rat. Anat Embryol 176, (1): 115–126, 1987. Prechtl JC, Powley TL. Organization and distribution of the rat subdiaphragmatic vagus and associated paraganglia. J Comp Neurol 235(2):182-195, 1985. Powley TL, Fox EA, Berthoud HR. Retrograde tracer technique for assessment of selective and total subdiaphragmatic vagotomies. Am J Physiol 253(2):361-370, 1987. Powley TL, Prechtl JC, Fox EA, Berthoud HR. Anatomical considerations for surgery of the rat abdominal vagus: distribution, paraganglia and regeneration. J Auton Nerv Syst 9(1):79-97, 1983. Rishal I, Fainzilber M. Retrograde signaling in axonal regeneration. Exp Neurol 223(1):5-10, 2010. Sheng M, Greenberg ME. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4(4):477-485, 1990.13 Shin AC, Zheng H, Berthoud HR. Vagal innervation of the hepatic portal vein and liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia, weight loss, and hypermetabolism. Ann Surg 255(2):294-301, 2012. Shokouhi BN, Wong BZ, Siddiqui S, Lieberman AR, Campbell G, Tohyama K, Anderson PN. Microglial responses around intrinsic CNS neurons are correlated with axonal regeneration. BMC Neurosci 11:13, 2010. Siaud P, Puech R, Assenmacher I, Alonso G. Adrenergic innervation of the dorsal vagal motor nucleus: possible involvement in inhibitory control of gastric acid and pancreatic insulin secretion. Cell Tissue Res 259(3):535-542, 1990. Skene JH, Willard M. Electrophoretic analysis of axonally transported proteins in toad retinal ganglion cells. J Neurochem 37(1):79-87, 1981a. Skene JH, Willard M. Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J Cell Biol 89(1):86-95, 1981b. Skene JH, Willard M. Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J Cell Biol 89(1):96-103, 1981c. Skene JH, Willard M. Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons. J Neurosci 1(4):419-426, 1981d. Smith GP, Jerome C. Effects of total and selective abdominal vagotomies on water intake in rats. J Auton Nerv Syst 9(1):259-271, 1983. Sterner MR, Fox EA, Powley TL. A retrograde tracer strategy using True Blue to label the preganglionic parasympathetic innervation of the abdominal viscera. J Neurosci Methods 14(4):273-280,1985. Stimpson CD, Tetreault NA, Allman JM, Jacobs B, Butti C, Hof PR, Sherwood CC. Biochemical specificity of von Economo neurons in hominoids. Am J Hum Biol 23(1):22-8, 2011. Sugitani A, Yoshida J, Nyhus LM, Donahue PE. Viscerotopic representation of preganglionic efferent vagus nerve in the brainstem of the rat: a Fluoro-Gold study. J Auton Nerv Syst 34(2- 3):211-219, 1991. Schwaber JS, Kapp BS, Higgins G. The origin and extent of direct amygdala projections to the region of the dorsal motor nucleus of the vagus and the nucleus of the solitary tract. Neurosci Lett 20(1):15-20, 1980. Takaoka T, Shiotani A, Saito K, Tomifuji M, Mori Y, Fujimine T, Okano H, Ogawa K. Neuronal re-juvenilization in the nucleus ambiguus after vagal nerve injury. Neurosci Res 65(4):353-359, 2009. Takeuchi Y, Matsushima S, Matsushima R, Hopkins DA. Direct amygdaloid projections to the dorsal motor nucleus of the vagus nerve: a light and electron microscopic study in the rat. Brain Res 280(1):143-7, 1983.14 Takayama K, Ishikawa N, Miura M. Sites of origin and termination of gastric vagus preganglionic neurons: an HRP study in the rat. J Auton Nerv Syst 6(2):211-223, 1982. ter Horst GJ, Luiten PG, Kuipers F. Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J Auton Nerv Syst 11(1):59-75, 1984. Tetzlaff W, Alexander SW, Miller FD, Bisby MA. Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 11(8):2528-2544, 1991. Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 15(2):170-182, 2000. Tsukamoto K, Hayakawa T, Maeda S, Tanaka K, Seki M, Yamamura T. Projections to the alimentary canal from the dopaminergic neurons in the dorsal motor nucleus of the vagus of the rat. Auton Neurosci 123(1-2):12-18, 2005. Uno T, Shogaki K, Bamba H, Koike S, Naruse Y, Ijima N, Tanaka M, Hisa Y. Growth associated protein-43 mRNA expression in nucleus ambiguus motoneurons after recurrent laryngeal nerve injury in the rat. Acta Otolaryngol 123(2):292-296, 2003. Wang FB, Young YK, Kao CK. Abdominal vagal afferent pathways and their distributions of intraganglionic laminar endings in the rat duodenum. J Comp Neurol 520(5):1098-1113, 2012. Woolf CJ, Reynolds ML, Molander C, O'Brien C, Lindsay RM, Benowitz LI. The growthassociated protein GAP-43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury. Neuroscience 34(2):465-478, 1990. Yang M, Zhao X, Miselis RR. The origin of catecholaminergic nerve fibers in the subdiaphragmatic vagus nerve of rat. J Auton Nerv Syst 76(2-3):108-117, 1999. Zhang X, Fogel R, Renehan WE. Physiology and morphology of neurons in the dorsal motor nucleus of the vagus and the nucleus of the solitary tract that are sensitive to distension of the small intestine. J Comp Neurol 323(3):432-448, 1992. Zhang XY, Ai HB, Cui XY. Effects of nuclei ambiguus and dorsal motor nuclei of vagus on gastric H+ and HCO3- secretion in rats. World J Gastroenterol 12(20): 3271–3274, 2006
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Curso de Medicina
Brasil
UFTM
Programa de Pós-Graduação em Ciências Fisiológicas
publisher.none.fl_str_mv Universidade Federal do Triângulo Mineiro
Instituto de Ciências da Saúde - ICS::Curso de Medicina
Brasil
UFTM
Programa de Pós-Graduação em Ciências Fisiológicas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFTM
instname:Universidade Federal do Triangulo Mineiro (UFTM)
instacron:UFTM
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
instacron_str UFTM
institution UFTM
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
collection Biblioteca Digital de Teses e Dissertações da UFTM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)
repository.mail.fl_str_mv bdtd@uftm.edu.br||bdtd@uftm.edu.br
_version_ 1797221133036027904