Detalhes bibliográficos
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFTM
id UFTM_f076edfe17c41cfa2428039b7885e885
oai_identifier_str oai:bdtd.uftm.edu.br:tede/929
network_acronym_str UFTM
network_name_str Biblioteca Digital de Teses e Dissertações da UFTM
repository_id_str
reponame_str Biblioteca Digital de Teses e Dissertações da UFTM
instacron_str UFTM
institution Universidade Federal do Triangulo Mineiro (UFTM)
instname_str Universidade Federal do Triangulo Mineiro (UFTM)
spelling Atividade da acetilcolinesterase em populações sazonais experimentais de Zaprionus indianus Gupta 1970 (Diptera: Drosophilidae) expostas ao organofosforado MalathionAcetilcolinesterase.Organofosforado.Sazonalidade.Acetylcholinesterase.Organophosphate.Seasonality.Ciências AmbientaisA espécie Zaprionus indianus é uma espécie originaria da Africa porém é encontrada em muitos continentes do planeta, incluindo o continente americano. Essa espécie possui um potencial de se tornar praga em culturas de frutas que são amplamente distribuidas no Brasil, e o seu controle bem como de outros grupos de insetos, incluindo vetores de doenças como o Aedes aegypti, é realizado atraves da utilização de inseticidas organofosforados, em áreas rurais e urbanas. O presente trabalho teve como objetivo avaliar o potencial bioindicador de contaminação por Malathion da enzima Acetilcolinesterase, alvo do inseticida, em gerações F1 de populações de Uberaba e Peirópolis da espécie Zaprionus Indianus. Além de verificar se existe diferença significativa relacionada ao sexo, bem como o comportamento sazonal, relacionado a atividade catalitica dessa enzima em estações secas e úmidas. Foram realizadas análises de espectofotometria de luz e eletroforetica em gel de poliacrilamida para avaliar a ação e inibição enzimática, utilizando as cabeças dos individuos experimentais. Os dados encontraram valores significativos em comparações de atividades encontradas em populações de estações diferentes, além de uma correspondencia entre o final de uma estação e meio de outra. Os testes de inibição demostração valores inferiores de atividade enzimatica quando exposta ao inseticida Malathion em populações das estações de março e junho. Valores não significativos foram encontrados para comparações entre machos e fêmeas. De acordo com os resultados das análises, a enzima AChE mostrou um alto potencial como bioindicadora de contaminação por Malathion.Zaprionus indianus is a species originally from Africa but is found on many continents of the planet, including the American continent. This species has the potential to become a pest in fruit crops that are widely distributed in Brazil, and its control as well as other insect groups, including disease vectors such as Aedes aegypti, is accomplished through the use of organophosphate insecticides, in rural and urban areas. The present work aimed to evaluate the potential bioindicator of Malathion contamination of the enzyme Acetylcholinesterase, target of the insecticide, in F1 generations of Uberaba and Peirópolis populations of Zaprionus Indianus. In addition to verifying if there is significant difference related to sex, as well as seasonal behavior, related to the catalytic activity of this enzyme in dry and humid seasons. Light spectrophotometry and polyacrylamide gel electrophoretic analysis were performed to evaluate the enzymatic action and inhibition using the heads of the experimental subjects. The data found significant values in comparisons of activities found in populations of different seasons, as well as a correspondence between the end of one season and a half of another. Inhibition tests showed lower values of enzyme activity when exposed to the Malathion insecticide in populations of the March and June seasons. Non-significant values were found for comparisons between males and females. According to the results of the analyzes, the enzyme AChE showed a high potential as a bioindicator of Malathion contamination.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal do Triângulo MineiroInstituto de Ciências Biológicas e Naturais - ICBNBrasilUFTMPrograma de Pós-Graduação Interdisciplinar em Biociências AplicadasGALEGO, Luís Gustavo da Conceição90909860653http://lattes.cnpq.br/9101105344317706MENDONÇA, Ricardo José99594242604http://lattes.cnpq.br/5588755574505816NUNES, Polyana Ferreira2019-12-02T13:09:32Z2019-09-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfNUNES, Polyana Ferreira. Atividade da acetilcolinesterase em populações sazonais experimentais de Zaprionus indianus Gupta 1970 (Diptera: Drosophilidae) expostas ao organofosforado Malathion. 2019. 53f. Dissertação (Mestrado em Biociências Aplicadas) - Programa de Pós-Graduação Interdisciplinar em Biociências Aplicadas) - Universidade Federal do Triângulo Mineiro, Uberaba, 2019.http://bdtd.uftm.edu.br/handle/tede/929porALAWAMLEH, A. et al. Biological Studies on the african fig fly, Zaprionus indianus GUPTA (Diptera: Drosophilidae). Agriculture & Forestry, Podgorica, v. 62, n. 4, p. 65-71, 2016. ANANINA, G. et al. Inversion polymorphism and a new polytene chromosome map of Zaprionus indianus Gupta (1970) (Diptera, Drosophilidae). Genética, Bowling Green, v. 131, p. 117-25, 2007. ANVISA. Portaria nº 10/SNVS de 08 de Março de 1985. [Relação de substâncias com ação tóxica sobre animais ou plantas, cujo registro pode ser autorizado no Brasil, em atividades agropecuárias e em produtos domissanitários e determina outras providencias]. Diário Oficial da União, Brasília, DF, 14 mar. 1985. Disponível em: https://www.jusbrasil.com.br/diarios/3413972/pg-75-secao-1-diario-oficial-da-uniaodou-de-14-03-1985. Acesso em: 12 jan. 2018. ARAÚJO, C. R. M. et al. Acetilcolinesterase - AChE: uma enzima de interesse farmacológico. Revista Virtual Química, Niteroi, v. 8, n. 6, p.1818-34, 2016. AYRES, C. F. J. et al. Genetic differentiation of Aedes aegypty, the major dengue vector in Brazil. Journal of Medical Entomology, Oxford, v. 40, p. 430-5, 2003. BACHLI, G. TaxoDros: the database on taxonomy of Drosophilidae. 2015. Disponível em: http://www.taxodros.uzh.ch/. Acesso em: 07 jul. 2017. BAKRY, F. A.; HASHEESH, W. S.; HAMDI, S. A. H. Biological, biochemical, and molecular parameters of Helisoma duryi snails exposed to the pesticides Malathion and Deltamethrin. Pesticide Biochemistry and Physiology, San Diego, Califórnia, v. 101, n. 2, p. 86–92, 2011. BELZUNCES L. P.; GAUTHIER M.; COLIN M. E. Acetylcholinesterase in Apis mellifera head during postembryonic development—existence of a glycoinositolanchored membrane form at early pupal stages. Comparative Biochemistry and Physiology B, Oxford, v. 103, p. 57–63, 1992. BENCHARIT, R. W. et al. Crystal structure of human carboxylesterase 1 complexed with the Alzheimer´s drug tacrine: from binding promiscuity to selective inhibition. Chemistry and Biology, Mariland Heights, v. 10, p. 381-6, 2003. BRAGA, I. A.; VALLE, V. Aedes aegypti: inseticidas, mecanismos de ação e resistência. Epidemiologia e Serviços de Saúde, Brasília, DF, v. 16, p. 279-93, 2007. CANDIDO, A. K. A. A. et al. Fauna edáfica como bioindicadores de qualidade ambiental na nascente do rio São Lourenço, Campo Verde - MT, Brasil. Engenharia Ambiental, Local, v. 9, n. 1, p. 67-82, 2012. CASTRO, F. L.; VALENTE, V. L. S. Zaprionus indianus invading communities in the southern Brazilian city of Porto Alegre. Drosophila Information Service, Oklahoma, n. 84, p. 15-7, 2001. CERON, R. Padrão de esterases no desenvolvimento de Drosophila mulleri, D. arizonensis e seus híbridos. Biological Sciences – Genetics, Leicester, v., n., p.28-33, 1988. CHASSAGNARD, M. T.; TSACAS, L. Le sous-genre Zaprionus S. Str. Définition de groupes d’espèces et révision du sous-groupe vittiger (Diptera: Drosophilidae). Annales de la Société Entomologique de France, n. 29, p. 173-194, 1993. CHEMINOVA Ltda Brasil. Malathion 1000 EC Cheminova. 2017. Disponível em: http://www.adapar.pr.gov.br/arquivos/File/defis/DFI/Bulas/Inseticidas/MALATHION10 00ECCHEMINOVA.pdf. Acesso em: 24 jul. 2018. CLARK, A. G. et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature, London, v. 450, p. 203–18, 2007. COQUILLETT, D. W. New Diptera from Southern Africa. Proc. United States National Museum., Kansas, v. 24, p. 27-32, 1902. COMMAR L. S. et al. Taxonomic and evolutionary analysis of Zaprionus indianus and its colonization of Palearctic and Neotropical regions. Genetics and Molecular Biology, Ribeirão Preto, v. 35, n. 2, p. 395–406, 2012. CULIK, M. P.; MARTINS, D. S.; VENTURA, J. A. Uma nova praga potencial para o mamão e outros registros de pragas no Espírito Santo. In: SIMPOSIO PAPAYA BRASILEIRO, 2, 2005, Vitória. Anais [...]. Vitória: INCAPER, 2005. p. 518-21. Disponível em: https://biblioteca.incaper.es.gov.br/digital/bitstream/item/916/1/2005- entomologia-19.pdf. Acesso em: 20 fev. 2018. DAILIANIS, S. et al. Evaluation of neutral red retention assay, micronucleus test, acetylcholinesterase activity and a signal transduction molecule (cAMP) in tissues of Mytilus galloprovincialis (L.), in pollution monitoring. Marine Environmental Research, Amesterdam, v. 56, p. 446-70, 2003. DA MATA, R. A. et al. Invasive and flexible: niche shift in the drosophilid Zaprionus indianus (Insecta, Diptera). Biological Invasions, Knoxville, n. 12, p. 1231–41, 2010. DAVID, J. R. et al. Sexual dimorphism of body size and sternopleural britle number: a comparison of geographic population of an invasive cosmopolitan drosophilid. Genetica, v. 128, p. 109-22, 2006a. DAVID, J. R. et al. Quantitative trait analyses and geographic variability of natural populations of Zaprionus indianus, a recent invader in Brazil. Heredity. Edinburgh, v. 96, p. 53-62, 2006b. DEWEY, J. E. Utility of bioassay in the determination of pesticide residues. Journal of Agriculture Food Chemistry, Washington, v. 6, n.4, p. 274-281, 1958. DOGE, J.S.; OLIVEIRA, H.V.; TIDON, R. Rapid response to abiotic and biotic factors controls population growth of two invasive drosophilids (Diptera) in the Brazilian Savanna. Biol Invasions, Dordrecht, v. 17, p. 2461–2474, 2015. DOMINGUES, I.; et al. Cholinesterase and glutathione S-transferase activities in freshwater invertebrates as biomarkers to assess pesticide contamination. Environmental Toxicology & Chemistry, New York, v. 29, p. 5–18, 2010. ELLMAN, G. L.; et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, Oxford, v. 7, p. 88-95, 1961. FERREIRA, D.S.; TIDON, R. Colonizing potential of Drosophilidae (insect, Diptera) in environments with different grades of urbanization. Biodiversity and conservation, London, v.14, n.8, p. 1809-1821, 2005. FEYEREISEN, R.; DERMAUW, W.; LEEUWEN,T. VAN. Genotype to phenotype, the molecular and physiological dimensions of resistance in 2 arthropods. Pesticide Biochemistry and Physiology, San Diego, v. 121, p. 61-77, 2015. FOURNIER, D., MUTERO, A. Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comparative Biochemistry and Physiology, Oxford, v. 108, p. 19-31, 1994. FFRENCH-CONSTANT, R. H. The molecular genetics of insecticide resistance. Genetics, Austin, v. 194, p. 807-815, 2013. GALEGO, L. G.; CERON, C. R.; CARARETO, C. M. Characterization of esterases in a Brazilian population of Zaprionus indianus (Diptera: Drosophilidae). Genética, vol 126, p. 89-99, 2006. GALEGO, L. G. C.; CARARETO, C. M. A. Effects of intraspecific and interspecific pre-adult competition on the neotropical region colonizer fly Zaprionus indianus (Diptera: Drosophilidae). Bragantia, Campinas, v. 64, p. 249-255, 2005. GALEGO, L. G. C.; CARARETO, C. M. A. Analysis of the drosophilid Zaprionus indianus introduction in Brazil: Contribution of esterase loci polymorphisms. Drosophila Information Service, Oklahoma, v. 90, p.79-84, 2007. GALEGO, L. G. C.; CARARETO, C. M. A. Variation at the Est3 locus and adaptability to organophosphorous compounds in Zaprionus indianus populations. Entomologia Experimentalis e Applicata, São José do Rio Preto - Sp, v. 134, n. 1, p.97-105, jan. 2010. GALLOWAY, T.S; HANDY, R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology, London, v. 12, p.345–363, 2003. GARCIA, L. M., et al. Characterization of cholinesterase from guppy (Poecilia reticulata) muscle and its in vitro inhibition by environmental contaminants. Biomarkers, London, v. 5, p. 274–284, 2000. GILBERT, P. et al. Drosophila as models to understand the adaptive process during invasion. Biological Invasions, Dordrecht, v.18, p.1089–1103, 2016. GOMES, L. H. et al. Presence of the yeast Candida tropicalis in figs infected by the fruit fly Zaprionus indianus (Diptera, Drosophilidae). Revista de Microbiologia, São Paulo, v. 34, p. 5-7, 2003. GOÑI, B., et al. First record of Zaprionus indianus Gupta, 1970 (Diptera Drosophilidae) in southern localities of Uruguay, South America. Drosophila Information Service, Oklahoma, v. 84, p. 61–65, 2001. GUPTA, J.P. Description of a new species of Phorticella and Zaprionus (Drosophilidae) from India. Proceedings of the Indian National Science Academy, Bahadur Shah Zafar Marg, v.36, p.62-70, 1970. HOFFMANN, A. A. et al. Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic region: patterns for desiccation, starvation, cold resistance and associated traits. Evolution, Malden, v. 55, p. 1621–1630, 2001. JENNINGS, B. H. Drosophila—a versatile model in biology & medicine. Materials Today, Hong Kong, v. 14, n. 5, p. 190–195, 2011. KALRA, B.; PARKASH, R. Effects of saturation deficit on desiccation resistance and water balance in seasonal populations of the tropical drosophilid Zaprionus indianus. Journal of Experimental Biology, London, v. 219, p. 3237-3245, 2016. KALRA, B.; TAMANG, A. M.; PARKASH, R. Cross-tolerance effects due to adult heat hardening, desiccation and starvation acclimation of tropical drosophilid-Zaprionus indianus. Comparative Biochemistry and Physiology Part A, Oxford, v. 209, p. 65– 73, 2017. KARAN, D.; et al. Desiccation and starvation tolerance of adult Drosophila: opposite latitudinal clines in natural populations of three different species. Evolution, Malden, v. 52, p. 825–831, 1998. KARAN, D.; MORETEAU, B.; DAVID, J. R. Growth temperature and reaction norms of morphometrical traits in a tropical drosophilid: Zaprionus indianus. Heredity, Edinburgh, v. 83, p. 398-407, 1999. KATO, C. M.; set al. Ocorrência de Zaprionus indianus Gupta, 1970 (Diptera, Drosophilidae) no estado de Minas Gerais. Ciência Agrotecnologia, Lavras, v. 28, p. 454-455, 2004. KHAMBHAMPATI, S.; BLACK, W.C. Geographic origin of the US and Barzilian Aedes albopictus inferred from allozyme analysis. Heredity, Edinburgh, v. 67, p. 85-93, 1991. KOZAKI, T.; BRADY, S.G.; SCOTTT, J.G. Frequencies and evolution of organophosphate insensitive acetylcholinesterase alleles in laboratory and field populations of the house fly, Musca domestica L. Pesticide Biochemistry. Physiological, San Diego, Califórnia, v. 95, p. 6-11, 2009. LACHAISE, D.; SILVAIN, J. F. How two Afrotropical endemics made two cosmopolitan human commensals: The Drosophila melanogaster-D. simulans paleogeographic riddle. Genetica. v. 120, p. 17-39, 2004. LAU, P.S.; WONG, H.L.; GARRIGUES, P. Seasonal variation in antioxidative responses and acetylcholinesterase activity in Perna viridis in eastern oceanic and western estuarine waters in Hong Kong. Continental Shelf Research, London, v. 24, p. 1969-1987, 2004. LINDE, K. VAN DER; et al. First records of Zaprionus indianus (diptera: drosophilidae), a pest species on commercial fruits from panama and the united states of america. Florida Entomologist, Gainesville, v. 89, n. 3, p.402-404, Sept. 2006. LIONETTO, M. G. et al. Acetylcholinesterase as a Biomarker in Environmental and Occupational Medicine: New Insights and Future Perspectives. BioMed Research International. New York, v. n., p. ID 321213, 2013. LOWRY, O. H.; et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. v. 193, p. 265-75,1951. MARKOW, T. A. et al. Population genetics and recent colonization history of the invasive drosophilid Zaprionus indianus in Mexico and Central America. Biol Invasions. v.16 p. 2427–34, 2014. MATOS, E. L. C. et al. Efectos de los plaguicidas en trabajadores de cultivos intensivos. Boletim de la Oficina Sanitária Panamericana. Local, v. 104, n. 2, p. 160- 170, 1988. MOHANTY, S.; KHANNA, R. Genome‑wide comparative analysis of four Indian Drosophila species. Mol. Genet. Genomics. v. 292, p.1197, 2017. MORTON, R. A; SINGH, R. S. The Association between malathion resistance and acetylcholinesterase in Drosophila melanogaster. Biochemical Genetics. Local, v. 20, p. 1-2, 1982. MOREIRA, M. F.; MANSUR, J. F.; MANSUR, J. Resistência e Inseticidas: estratégias, desafios e perspectivas no controle de insetos. Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, cap. 15, p. 2-14, 2012. OAKESHOTT, J. G.; CLAUDIANOS, C.; RUSSELL, R. J.; ROBIN, G. C. Carboxvl/cholinesterases: a case studv of the evolution of a successful multifgene familv. Bioessays. Cambridge, v. 21, n. 12, p. 1031-42, 1999. OKADA, T. Oriental species, including New Guinea. In: ASHBURNER, M.; CARSON, H. L.; THOMPSON, J. N. (ed.). The genetics and biology of Drosophila. New York: Academic Press, 1981. v. 3, p. 261-89. OKADA, T.; CARSON, C. H. L. Drosophilidae from banana traps over an altitudinal transect in Papua New Guinea. I. Descriptions of new species with notes on newly recorded species. International Journal Entomology. India, v. 25, n. 2-3, p. 127-41, 1983. PARKASH, R.; SINGH, S.; RAMNIWAS, S. Seasonal changes in humidity level in the tropics impact body color polymorphism and desiccation resistance in Drosophila jambulina–Evidence for melanism-desiccation hypothesis. Journal of Insect Physiology, Oxford, v. 55, p. 358-68, 2009. PASTEUR, N.; RAYMOND, M. Insecticide resistance genes in mosquitoes: their mutations, migration, and selection in field populations. Journal of Heredity, Washington, v. 87, p. 444-49, 1996. PENARIOL L., BICUDO H.E.M.C. E MADI-RAVAZZI L. On the use of open or closed traps in the capture of drosophilids. Biota Neotropica, Campinas, v. 8, n. 2, p. 48-51, 2008. PFEIFER, S.; SCHIEDEK, D.; DIPPNER, J.W. Effect of temperature and salinity on acetylcholinesterase activity, acomman pollution biomarker, in Mytilus sp. From southwestern Baltic Sea. Journal Experment Marine Biolical Ecology. v. 320, p. 93-103, 2005. PERTILE, E., et al. Evidências experimentais e epidemiológicas entre exposição aos agrotóxicos e o desenvolvimento de câncer de mama. Revista Brasileira de Pesquisa a Saúde, Vitória, v. 20, n. 1, p. 137-47, 2018. PERUCELLO, D. [Fotografia de indivíduo de Z. indianus em hábito dorsal]. Uberaba, MG: Universidade Federal do Triângulo Mineiro, 2018a. PERUCELLO, D. [Morfologia externa de machos (esquerda) e fêmeas (direita) de Z. indianus]. Uberaba, MG: Universidade Federal do Triângulo Mineiro, 2018b. PHILLIPS, W. F.; BOWMAN, M.C.; ACHULTHEISZ, R.J. Estimation of insecticide residues in foods through parallel screening methods Journal of Agriculture Food Chemistry, Washington, v. 10, n. 6, p. 486-490, 1962. POPE, C. N. Organophosphorus pesticides: do they all have the same mechanism of toxicity? Journal Toxicological Environment Health, Oxford, v.2, n.2, p. 161-181, 1999. POPPE, J. L., et al. Environmental Determinants on the Assemblage Structure of Drosophilidae Flies in a Temperate-Subtropical Region. Neotropical Entomology, Londrina, v. 44, n.2, p. 140-152, 2015. QUINN, D. M. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chemical Reviews, Washington, v. 87, p. 955-979, 1987. RABEAA, E.I.; et al. Toxicity of naturally occurring Bio-fly and chitosan compounds to control the Mediterranean fruit fly Ceratitis capitata (Wiedemann). Natural Product Research, Cambridge, v. 29, p. 460-465, 2014. RANSON, H.; et al. Evolution of supergene families associated with insecticide resistance. Science, New York, v. 298, p. 179-181, 2002. RENKEMA, J. M. First records of Zaprionus indianus Gupta (Diptera: Drosophilidae) from commercial fruit fields in Ontario and Quebec, Canada. Journal of the Entomological Society of Ontario, Canadá, v. 144, p.125-130, 2013. RIBEIRO, M. L.; et al. Contaminação de águas subterrâneas por pesticidas: avaliação preliminar. Química Nova. São Paulo, v. 30, n. 3, jun., 2007. RUSSELL, R.J.; et al. Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pesticide Biochemical Physiology, San Diego, v. 79, p. 84-93, 2004. SALVI, R. M; et al. Neuropsychiatric evaluation in subjects chronically exposed to organophosphate pesticides. Toxicological Science, New York, v. 72, p.267–271, 2003. SANTOS, W. G. N., et al. Primeiro registro de Eucoilinae (Hymenoptera: Figitidae), parasitoides da Mosca-africana-do-figo Zaprionus indianus Gupta (Diptera: Drosophilidae), no bioma Caatinga. Semina: Ciências Agrárias, Londrina, v. 37, n. 5, p. 3055-3058, set./out. 2016. SETTA, N. D.E.; CARARETO, C. M. A. Fitness components of a recently-established population of Zaprionus indianus (Diptera, Drosophilidae) in Brazil.- Iheringia. Série Zoologia, Porto Alegre, v. 95, n. 1, p. 47-51, 2005. SILMAN, I.; SUSSMAN, J. L. Acetylcholinesterase: classical and non-classical functions and pharmacology. Current Opinion in Pharmacology, Oxford, vol. 5, p. 293–302, 2005. SILVA, M. G. P., et al. Tendências da morbimortalidade por câncer infantojuvenil em um polo de fruticultura irrigada. Caderno Saúde Coletiva, Rio de Janeiro. v. 26 (1), p. 38-44, 2018. SINGH, A.; JAISWAL, K.; SHARMA, B. Effect of low temperature stress on acetylcholinesterase activity and its kinetics in 5th instar larvae of Philosamia ricini. Journal of Biochemistry Research, London, v. 1, n. 2, p. 17-25, 2013. SINGHI, S.; KISSOON, N.; BANSAL, A. Dengue and dengue hemorragic fever: management issues in a intensive care unit. Jornal de Pediatria, Rio de Janeiro, v. 83, p. 22-35, 2007. STEIN, C.P; TEIXEIRA, E.P.; NOVO, P.S. Aspectos biológicos da mosca do figo, Zaprionus Indianus Gupta, 1970 (Diptera: Drosophilidae). Entomotropica, CampinasSP. v.18. p.219-221, 2003. SUN, Y. P; PANKASKIE, J. E. Drosophila, a Sensitive Insect, for the Microhioassay of Insecticide Residues. Journal Economical Entomology, Oxford, v. 47, n. 1, p. 180- 181, 1954. SLOTKIN, T. A. Guidelines for developmental neurotoxicity and their impact on organophosphate pesticides: a personal view from an academic perspective. Neurotoxicology, Amsterdam, v. 25, p. 631–640, 2004. TASKIN, B.G.; et al. Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens. Pesticide Biochemistry and Physiology, San Diego, v. 32 p. 1-14, 2016. TAUIL, P. L. Perspectivas de controle de doenças transmitidas por vetores no Brasil. Revista da Sociedade Brasileira de Medicina Tropical, Brasília, v. 39, n. 3, p. 275- 277, 2006. THOMPSON, H. M. Interactions between pesticides; a review of reported effets and their implications for wildlife risk assessment. Ecotoxicology, London, v. 5, p. 59-81, 1996. TIDON, R.; LEITE, D. F; LEÃO, B. F. D. Impact of the colonization of Zaprionus indianus (Diptera, Drosophilidae) in different ecosystems of the Neotropical region: 2 years after the invasion. Biological Conservation, Essex, v. 112, p. 299-305, 2003. TONI, D. C. de; et al. First record of Zaprionus indianus (Diptera, Drosophilidae) in the State of Santa Catarina, Brazil. Biotemas, Florianópolis- Sc., v. 14, n. 1, p.71-85, 2001. TOUTANT, J. P. Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Progress in Neurobiology, Oxford, v. 32, p. 423-446, 1989. TSACAS L., LACHAISE D. and DAVID J. Composition and biogeography of the afrotropical drosophilid fauna. In: Ashburner M, Carson HLI and Thompson JN (eds) The Genetics and Biology of Drosophila, London, v.3, p. 197-259, 1981. TOX-OER Learning Toxicology through Open Educational Resources , [Reação de hidrólise catalisada pela enzima acetilcolinesterase]. Finland, 2017. Disponível em: https://toxoer.com/. Acesso em: 18 ago. 2019. LINDE, K. VAN DER. Zaprionus indianus: species identification and taxonomic position. Dros. Inf. Serv., Tallahassee, v. 93, p.95-98, 2010. VAINIO, H. Public health and evidence-informed policy-making: The case of a commonly used herbicide. Scandinavian Journal Work Environment Health. Helsinki, v. 27 p. 1-5, 2019. VILELA, C. R. Is Zaprionus indianus Gupta, 1970 (Diptera Drosophilidae) currently colonizing the Neotropical region? Drosophila Information Service, Oklahoma, v. 82, p. 37-39, 1999. VILELA, C. R.; TEIXEIRA, E. P.; STEIN, C. P. Mosca-africana-do-figo, Zaprionus indianus (Diptera: Drosophilidae). In: VILELA, E. F., ZUCCHI, R. A.; CANTOR, F. (Eds.) Histórico e impacto das pragas introduzidas, Ribeirão Preto, p. 48-52, 2001. WEILL, M.; LUTFALLA, G.; MOGENSEN, K.; CHANDRE, F.; BERTHOMIEU, A.; BERTICAT, C. Comparative genomics: Insecticide resistance in mosquito vectors. Nature, Montpellier, v. 423, p.136-137, maio 2003. WHO. WORLD HEALTH ORGANIZATION. Organophosphorus insecticides: a general introduction. Environmental Health Criteria 63, Geneva, Switzerland, 1986. YASSIN, A.; ARARIPE, L.O.; CAPY, P.; Da LAGE, J.L.; KLACZKO, L.B.; MAISONHAUTE, C.; OGEREAU, D.; DAVID, J.R.. Grafting molecular phylogenetic tree with morphological branches to reconstruct the evolutionary history of the genus Zaprionus (Diptera: Drosophilidae). Molecular Phylogenetics and Evolution, San Diego, v.47, p.903-915, 2008a. YASSIN, A.; CAPY, P.; MADI-RAVAZZI, L.; OGEREAU, D.; DAVID, J.R. DNA barcode discovers two cryptic species and two geographical radiations in the invasive drosophilid Zaprionus indianus. Molecular Ecology Resources, Columbia, v. 8, p. 491- 501, 2008b. YASSIN, A.; et al. Polyphyly of the Zaprionus genus group (Diptera: Drosophilidae). Molecular Phylogenet Evolution, San Diego, v. 55, p. 335–339, 2010. YASSIN, A.; DAVID, J. R. Revision of the Afrotropical species of Zaprionus (Diptera, Drosophilidae), with descriptions of two new species and notes on internal reproductive structures and immature stages. ZooKeys, Bulgaria, v. 51, p. 33-72, 2010. ZAIA, D. A. M.; ZAIA, C. T. B. V.; LICHTIG, J. Determinação de proteínas totais via espectrofotometria: vantagens e desvantagens dos métodos existentes. Química Nova, São Paulo, v. 21, n. 6, p. 787-793, 1998.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFTMinstname:Universidade Federal do Triangulo Mineiro (UFTM)instacron:UFTM2019-12-03T04:00:19Zoai:bdtd.uftm.edu.br:tede/929Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.uftm.edu.br/PUBhttp://bdtd.uftm.edu.br/oai/requestbdtd@uftm.edu.br||bdtd@uftm.edu.bropendoar:2024-04-24T09:58:49.372338Biblioteca Digital de Teses e Dissertações da UFTM - Universidade Federal do Triangulo Mineiro (UFTM)false
_version_ 1809186155451645952