Utilização de algoritmos de otimização por enxame aplicados a seleção de características
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFT |
Texto Completo: | http://hdl.handle.net/11612/3235 |
Resumo: | A pesquisa por métodos de seleção de características tem se mostrado cada vez mais presente em aplicações de aprendizado de máquina, principalmente naquelas onde o número de atributos disponíveis está na faixa de centenas ou até mesmo milhares. Essas aplicações incluem, por exemplo, o processamento de documentos de texto, análise de expressão genética e química combinatória. Seleção de características ou variáveis é um conceito que propõe métodos que visam fornecer preditores mais rápidos e econômicos, melhorar o desempenho de previsão dos preditores e proporcionar uma melhor compreensão do processo subjacente que gerou os dados. Matematicamente, a seleção de características é formulada como um problema de otimização combinatória. Em geral, abordar problemas deste tipo de maneira a encontrar a solução exata nem sempre é viável. Dessa forma, métodos de inteligência computacional, podem ser usados para que permitam realizar a seleção de características na prática. Portanto, o objetivo deste trabalho é apresentar e propor técnicas de otimização guiadas por estratégias de seleção de características, dentre as quais pode-se destacar a otimização por enxame de partículas, otimização de enxame por competição e a combinação de ambos. |
id |
UFT_ae496ea6a9d2bb57b5b2d74224a0b98a |
---|---|
oai_identifier_str |
oai:repositorio.uft.edu.br:11612/3235 |
network_acronym_str |
UFT |
network_name_str |
Repositório Institucional da UFT |
repository_id_str |
|
spelling |
Sousa, Kleyson Morais deCarvalho, Rafael Lima de2021-10-26T18:37:42Z2021-10-26T18:37:42Z2018-10SOUSA, Kleyson Morais de. Utilização de algoritmos de otimização por enxame aplicados à seleção de características. 52f. Monografia (Graduação) - Ciência da computação, Universidade Federal do Tocantins, Palmas, 2020.http://hdl.handle.net/11612/3235A pesquisa por métodos de seleção de características tem se mostrado cada vez mais presente em aplicações de aprendizado de máquina, principalmente naquelas onde o número de atributos disponíveis está na faixa de centenas ou até mesmo milhares. Essas aplicações incluem, por exemplo, o processamento de documentos de texto, análise de expressão genética e química combinatória. Seleção de características ou variáveis é um conceito que propõe métodos que visam fornecer preditores mais rápidos e econômicos, melhorar o desempenho de previsão dos preditores e proporcionar uma melhor compreensão do processo subjacente que gerou os dados. Matematicamente, a seleção de características é formulada como um problema de otimização combinatória. Em geral, abordar problemas deste tipo de maneira a encontrar a solução exata nem sempre é viável. Dessa forma, métodos de inteligência computacional, podem ser usados para que permitam realizar a seleção de características na prática. Portanto, o objetivo deste trabalho é apresentar e propor técnicas de otimização guiadas por estratégias de seleção de características, dentre as quais pode-se destacar a otimização por enxame de partículas, otimização de enxame por competição e a combinação de ambos.The search for feature selection methods has been increasingly present in machine learning applications, especially in those where the number of available attributes is in the range of hundreds or even thousands. Such applications include, for example, word document processing, gene expression analysis, and combinatorial chemistry. Feature selection or selection of characteristics is a concept that proposes methods that aim to provide faster and more economical predictors, improve predictor prediction performance, and provide a better understanding of the underlying process that generated the data. Mathematically, feature selection is formulated as a combinatorial optimization problem. In general, addressing such problems in a way that finding the exact solution is not always feasible. In this way, computational intelligence methods can be used to allow the feature selection in practice. Therefore, the objective of this work is to present and propose optimization techniques guided by strategies of feature selection, among which we can highlight the optimization by swarm of particles, optimization of swarm by competition and the combination of both.Universidade Federal do TocantinsPalmasCiência da computaçãoPalmasGraduaçãoCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOSeleção de característicasOtimizaçãoAprendizagem de MáquinaEnxame de Partículas.Utilização de algoritmos de otimização por enxame aplicados a seleção de característicasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisporreponame:Repositório Institucional da UFTinstname:Universidade Federal do Tocantins (UFT)instacron:UFTinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.uft.edu.br/bitstream/11612/3235/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALKleyson Morais de Sousa ok.pdfKleyson Morais de Sousa ok.pdfapplication/pdf13252692http://repositorio.uft.edu.br/bitstream/11612/3235/1/Kleyson%20Morais%20de%20Sousa%20ok.pdf04f9752148a78d55f894424fd607ea15MD51TEXTKleyson Morais de Sousa ok.pdf.txtKleyson Morais de Sousa ok.pdf.txtExtracted texttext/plain52http://repositorio.uft.edu.br/bitstream/11612/3235/3/Kleyson%20Morais%20de%20Sousa%20ok.pdf.txt0c41cb9ebc221e5a4d63a04469104e4cMD53THUMBNAILKleyson Morais de Sousa ok.pdf.jpgKleyson Morais de Sousa ok.pdf.jpgGenerated Thumbnailimage/jpeg1256http://repositorio.uft.edu.br/bitstream/11612/3235/4/Kleyson%20Morais%20de%20Sousa%20ok.pdf.jpg5af2c6cf58031e4d6959f06daf7ac234MD5411612/32352021-10-27 03:01:04.775oai:repositorio.uft.edu.br:11612/3235Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://repositorio.uft.edu.br/oai/requestbiblioarraias@uft.edu.br || bibliogpi@uft.edu.br || bibliomira@uft.edu.br || bibliopalmas@uft.edu.br || biblioporto@uft.edu.br || biblioarag@uft.edu.br || dirbib@ufnt.edu.br || bibliocca@uft.edu.br || bibliotoc@uft.edu.bropendoar:2021-10-27T06:01:04Repositório Institucional da UFT - Universidade Federal do Tocantins (UFT)false |
dc.title.pt_BR.fl_str_mv |
Utilização de algoritmos de otimização por enxame aplicados a seleção de características |
title |
Utilização de algoritmos de otimização por enxame aplicados a seleção de características |
spellingShingle |
Utilização de algoritmos de otimização por enxame aplicados a seleção de características Sousa, Kleyson Morais de CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Seleção de características Otimização Aprendizagem de Máquina Enxame de Partículas. |
title_short |
Utilização de algoritmos de otimização por enxame aplicados a seleção de características |
title_full |
Utilização de algoritmos de otimização por enxame aplicados a seleção de características |
title_fullStr |
Utilização de algoritmos de otimização por enxame aplicados a seleção de características |
title_full_unstemmed |
Utilização de algoritmos de otimização por enxame aplicados a seleção de características |
title_sort |
Utilização de algoritmos de otimização por enxame aplicados a seleção de características |
author |
Sousa, Kleyson Morais de |
author_facet |
Sousa, Kleyson Morais de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Sousa, Kleyson Morais de |
dc.contributor.advisor1.fl_str_mv |
Carvalho, Rafael Lima de |
contributor_str_mv |
Carvalho, Rafael Lima de |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Seleção de características Otimização Aprendizagem de Máquina Enxame de Partículas. |
dc.subject.por.fl_str_mv |
Seleção de características Otimização Aprendizagem de Máquina Enxame de Partículas. |
description |
A pesquisa por métodos de seleção de características tem se mostrado cada vez mais presente em aplicações de aprendizado de máquina, principalmente naquelas onde o número de atributos disponíveis está na faixa de centenas ou até mesmo milhares. Essas aplicações incluem, por exemplo, o processamento de documentos de texto, análise de expressão genética e química combinatória. Seleção de características ou variáveis é um conceito que propõe métodos que visam fornecer preditores mais rápidos e econômicos, melhorar o desempenho de previsão dos preditores e proporcionar uma melhor compreensão do processo subjacente que gerou os dados. Matematicamente, a seleção de características é formulada como um problema de otimização combinatória. Em geral, abordar problemas deste tipo de maneira a encontrar a solução exata nem sempre é viável. Dessa forma, métodos de inteligência computacional, podem ser usados para que permitam realizar a seleção de características na prática. Portanto, o objetivo deste trabalho é apresentar e propor técnicas de otimização guiadas por estratégias de seleção de características, dentre as quais pode-se destacar a otimização por enxame de partículas, otimização de enxame por competição e a combinação de ambos. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-10 |
dc.date.accessioned.fl_str_mv |
2021-10-26T18:37:42Z |
dc.date.available.fl_str_mv |
2021-10-26T18:37:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUSA, Kleyson Morais de. Utilização de algoritmos de otimização por enxame aplicados à seleção de características. 52f. Monografia (Graduação) - Ciência da computação, Universidade Federal do Tocantins, Palmas, 2020. |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11612/3235 |
identifier_str_mv |
SOUSA, Kleyson Morais de. Utilização de algoritmos de otimização por enxame aplicados à seleção de características. 52f. Monografia (Graduação) - Ciência da computação, Universidade Federal do Tocantins, Palmas, 2020. |
url |
http://hdl.handle.net/11612/3235 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Tocantins Palmas Ciência da computação Palmas Graduação |
publisher.none.fl_str_mv |
Universidade Federal do Tocantins Palmas Ciência da computação Palmas Graduação |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFT instname:Universidade Federal do Tocantins (UFT) instacron:UFT |
instname_str |
Universidade Federal do Tocantins (UFT) |
instacron_str |
UFT |
institution |
UFT |
reponame_str |
Repositório Institucional da UFT |
collection |
Repositório Institucional da UFT |
bitstream.url.fl_str_mv |
http://repositorio.uft.edu.br/bitstream/11612/3235/2/license.txt http://repositorio.uft.edu.br/bitstream/11612/3235/1/Kleyson%20Morais%20de%20Sousa%20ok.pdf http://repositorio.uft.edu.br/bitstream/11612/3235/3/Kleyson%20Morais%20de%20Sousa%20ok.pdf.txt http://repositorio.uft.edu.br/bitstream/11612/3235/4/Kleyson%20Morais%20de%20Sousa%20ok.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 04f9752148a78d55f894424fd607ea15 0c41cb9ebc221e5a4d63a04469104e4c 5af2c6cf58031e4d6959f06daf7ac234 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFT - Universidade Federal do Tocantins (UFT) |
repository.mail.fl_str_mv |
biblioarraias@uft.edu.br || bibliogpi@uft.edu.br || bibliomira@uft.edu.br || bibliopalmas@uft.edu.br || biblioporto@uft.edu.br || biblioarag@uft.edu.br || dirbib@ufnt.edu.br || bibliocca@uft.edu.br || bibliotoc@uft.edu.br |
_version_ |
1813912824153374720 |