Evaluating a typology of signals for automatic detection of complementarity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng por |
Título da fonte: | Domínios de Lingu@gem |
Texto Completo: | https://seer.ufu.br/index.php/dominiosdelinguagem/article/view/63776 |
Resumo: | In a cluster of news texts on the same event, two sentences from different documents might express different multi-document phenomena (redundancy, complementarity, and contradiction). Cross-Document Structure Theory (CST) provides labels to explicitly represent these phenomena. The automatic identification of the multi-document phenomena and their correspondent CST relations is definitely handy for Automatic Multi-Document Summarization since it helps computers understand text meaning. In this paper, we evaluated a typology of (textual) signals for the automatic detection of the CST relations of complementarity (i.e., Historical background, Follow-up and Elaboration) in a multi-document corpus of news texts in Brazilian Portuguese. Using algorithms from different machine-learning paradigms, we obtained classifiers that achieved high general accuracy (higher than 90%), indicating the potential of the signals. |
id |
UFU-12_4305cd6a4c675a795d70aaa39fa039f8 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/63776 |
network_acronym_str |
UFU-12 |
network_name_str |
Domínios de Lingu@gem |
repository_id_str |
|
spelling |
Evaluating a typology of signals for automatic detection of complementarityAvaliação de uma tipologia de sinais para a detecção automática da complementaridadeCross-Document Structure TheorySumarização automáticaComplementaridadeCorpus multidocumentoSinal textualCross-Document Structure TheoryAutomatic summarizationMulti-document CorpusComplementarityTextual signalIn a cluster of news texts on the same event, two sentences from different documents might express different multi-document phenomena (redundancy, complementarity, and contradiction). Cross-Document Structure Theory (CST) provides labels to explicitly represent these phenomena. The automatic identification of the multi-document phenomena and their correspondent CST relations is definitely handy for Automatic Multi-Document Summarization since it helps computers understand text meaning. In this paper, we evaluated a typology of (textual) signals for the automatic detection of the CST relations of complementarity (i.e., Historical background, Follow-up and Elaboration) in a multi-document corpus of news texts in Brazilian Portuguese. Using algorithms from different machine-learning paradigms, we obtained classifiers that achieved high general accuracy (higher than 90%), indicating the potential of the signals.Em uma coleção de notícias sobre um mesmo evento, duas sentenças de textos distintos podem expressar diferentes fenômenos multidocumento (redundância, complementaridade e contradição). A Cross-Document Structure Theory (CST) provê rótulos para representar esses fenômenos. A identificação automática dos fenômenos multidocumento e das relações CST correspondentes é central à Sumarização Automática Mutidocumento, pois ajuda a máquina a entender o conteúdo textual. Neste artigo, avaliou-se uma tipologia de sinais (textuais) para a detecção automática das relações CST de complementaridade (Historical background, Follow-up e Elaboration) em um corpus multidocumento de notícias em Português do Brasil. Utilizando algoritmos de diferentes paradigmas de Aprendizado de Máquina, obtiveram-se classificadores que atingiram alto índice de acurácia geral (superior a 90%), indicando o potencial dos sinais.PP/UFU2022-09-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/xmlhttps://seer.ufu.br/index.php/dominiosdelinguagem/article/view/6377610.14393/DL52-v16n4a2022-10Domínios de Lingu@gem; Vol. 16 No. 4 (2022): The computational treatment of Brazilian Portuguese; 1517-1543Domínios de Lingu@gem; Vol. 16 Núm. 4 (2022): El tratamiento computacional del portugués brasileño; 1517-1543Domínios de Lingu@gem; v. 16 n. 4 (2022): Tratamento Computacional do Português Brasileiro; 1517-15431980-5799reponame:Domínios de Lingu@geminstname:Universidade Federal de Uberlândia (UFU)instacron:UFUengporhttps://seer.ufu.br/index.php/dominiosdelinguagem/article/view/63776/33822https://seer.ufu.br/index.php/dominiosdelinguagem/article/view/63776/35235Copyright (c) 2022 Jackson Wilke da Cruz Souza, Ariani Di Felippohttp://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessCruz Souza, Jackson Wilke daDi Felippo, Ariani2022-12-09T18:19:54Zoai:ojs.www.seer.ufu.br:article/63776Revistahttps://seer.ufu.br/index.php/dominiosdelinguagemPUBhttps://seer.ufu.br/index.php/dominiosdelinguagem/oairevistadominios@ileel.ufu.br||1980-57991980-5799opendoar:2022-12-09T18:19:54Domínios de Lingu@gem - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Evaluating a typology of signals for automatic detection of complementarity Avaliação de uma tipologia de sinais para a detecção automática da complementaridade |
title |
Evaluating a typology of signals for automatic detection of complementarity |
spellingShingle |
Evaluating a typology of signals for automatic detection of complementarity Cruz Souza, Jackson Wilke da Cross-Document Structure Theory Sumarização automática Complementaridade Corpus multidocumento Sinal textual Cross-Document Structure Theory Automatic summarization Multi-document Corpus Complementarity Textual signal |
title_short |
Evaluating a typology of signals for automatic detection of complementarity |
title_full |
Evaluating a typology of signals for automatic detection of complementarity |
title_fullStr |
Evaluating a typology of signals for automatic detection of complementarity |
title_full_unstemmed |
Evaluating a typology of signals for automatic detection of complementarity |
title_sort |
Evaluating a typology of signals for automatic detection of complementarity |
author |
Cruz Souza, Jackson Wilke da |
author_facet |
Cruz Souza, Jackson Wilke da Di Felippo, Ariani |
author_role |
author |
author2 |
Di Felippo, Ariani |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Cruz Souza, Jackson Wilke da Di Felippo, Ariani |
dc.subject.por.fl_str_mv |
Cross-Document Structure Theory Sumarização automática Complementaridade Corpus multidocumento Sinal textual Cross-Document Structure Theory Automatic summarization Multi-document Corpus Complementarity Textual signal |
topic |
Cross-Document Structure Theory Sumarização automática Complementaridade Corpus multidocumento Sinal textual Cross-Document Structure Theory Automatic summarization Multi-document Corpus Complementarity Textual signal |
description |
In a cluster of news texts on the same event, two sentences from different documents might express different multi-document phenomena (redundancy, complementarity, and contradiction). Cross-Document Structure Theory (CST) provides labels to explicitly represent these phenomena. The automatic identification of the multi-document phenomena and their correspondent CST relations is definitely handy for Automatic Multi-Document Summarization since it helps computers understand text meaning. In this paper, we evaluated a typology of (textual) signals for the automatic detection of the CST relations of complementarity (i.e., Historical background, Follow-up and Elaboration) in a multi-document corpus of news texts in Brazilian Portuguese. Using algorithms from different machine-learning paradigms, we obtained classifiers that achieved high general accuracy (higher than 90%), indicating the potential of the signals. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-12 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/dominiosdelinguagem/article/view/63776 10.14393/DL52-v16n4a2022-10 |
url |
https://seer.ufu.br/index.php/dominiosdelinguagem/article/view/63776 |
identifier_str_mv |
10.14393/DL52-v16n4a2022-10 |
dc.language.iso.fl_str_mv |
eng por |
language |
eng por |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/dominiosdelinguagem/article/view/63776/33822 https://seer.ufu.br/index.php/dominiosdelinguagem/article/view/63776/35235 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Jackson Wilke da Cruz Souza, Ariani Di Felippo http://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Jackson Wilke da Cruz Souza, Ariani Di Felippo http://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/xml |
dc.publisher.none.fl_str_mv |
PP/UFU |
publisher.none.fl_str_mv |
PP/UFU |
dc.source.none.fl_str_mv |
Domínios de Lingu@gem; Vol. 16 No. 4 (2022): The computational treatment of Brazilian Portuguese; 1517-1543 Domínios de Lingu@gem; Vol. 16 Núm. 4 (2022): El tratamiento computacional del portugués brasileño; 1517-1543 Domínios de Lingu@gem; v. 16 n. 4 (2022): Tratamento Computacional do Português Brasileiro; 1517-1543 1980-5799 reponame:Domínios de Lingu@gem instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Domínios de Lingu@gem |
collection |
Domínios de Lingu@gem |
repository.name.fl_str_mv |
Domínios de Lingu@gem - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
revistadominios@ileel.ufu.br|| |
_version_ |
1797067717705990144 |