Software for automatic diagnostic prediction of skin clinical images based on ABCD rule
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Bioscience journal (Online) |
Texto Completo: | https://seer.ufu.br/index.php/biosciencejournal/article/view/34738 |
Resumo: | Cancer is responsible for about 7 million annual deaths worldwide. Among them, the melanoma type, responsible for 4% of the skin cancers, whose incidence has doubled in the last ten years. The processing of digital images has shown good potential for assistance in the early detection of melanomas. In this sense, the objective of the current study was to develop a software for clinical images processing and reach a score of accuracy higher than 95%. The ABCD rule was used as a guide for the development of computational analysis methods. MATLAB was used as programming environment for the development of the processing of digital images software. The images used were acquired from two banks of free images. They included images of melanomas (n=15) and nevi images (not cancer) (n=15). Images in RGB color channel were used, which were converted to grayscale, 8x8 median filter applications and 3x3 neighborhood approach technique. After, we proceeded to the binarization and inversion of black and white for later extraction of contour characteristics of the lesion. The classifier used was an artificial neural network of radial basis, getting accuracy for diagnosis of melanomas images of 100% and of 90.9% for not cancer images. Thus, global correction for diagnostic prediction was 95.5%. An area under the ROC graph 0.967 was achieved, suggesting a great diagnostic predictive ability. Besides, the software presents low cost use, since it can be run on most operating systems used nowadays. |
id |
UFU-14_053bcca6b2f0a46bde51db5503f60613 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/34738 |
network_acronym_str |
UFU-14 |
network_name_str |
Bioscience journal (Online) |
repository_id_str |
|
spelling |
Software for automatic diagnostic prediction of skin clinical images based on ABCD rule Software para predição diagnóstica automática de imagens clínicas da pele baseada na regra ABCDSkin cancerProcessing of digital imagesComputer visionAutomatic diagnosisHealth SciencesCancer is responsible for about 7 million annual deaths worldwide. Among them, the melanoma type, responsible for 4% of the skin cancers, whose incidence has doubled in the last ten years. The processing of digital images has shown good potential for assistance in the early detection of melanomas. In this sense, the objective of the current study was to develop a software for clinical images processing and reach a score of accuracy higher than 95%. The ABCD rule was used as a guide for the development of computational analysis methods. MATLAB was used as programming environment for the development of the processing of digital images software. The images used were acquired from two banks of free images. They included images of melanomas (n=15) and nevi images (not cancer) (n=15). Images in RGB color channel were used, which were converted to grayscale, 8x8 median filter applications and 3x3 neighborhood approach technique. After, we proceeded to the binarization and inversion of black and white for later extraction of contour characteristics of the lesion. The classifier used was an artificial neural network of radial basis, getting accuracy for diagnosis of melanomas images of 100% and of 90.9% for not cancer images. Thus, global correction for diagnostic prediction was 95.5%. An area under the ROC graph 0.967 was achieved, suggesting a great diagnostic predictive ability. Besides, the software presents low cost use, since it can be run on most operating systems used nowadays.O câncer é responsável por cerca de 7 milhões de óbitos anuais em todo o mundo. Entre eles, o tipo melanoma, responsável por 4% dos cânceres de pele, cuja incidência dobrou mundialmente nos últimos dez anos. O processamento digital de imagens tem mostrado um bom potencial para auxiliar no diagnóstico precoce de melanomas. Neste sentido, objetivo do presente estudo foi desenvolver um software para processamento digital de imagens clínicas para diagnóstico automático baseado na regra ABCD que alcançasse um percentual de acerto maior do que 95% dos casos. Utilizou-se como norteador a regra ABCD para o desenvolvimento de métodos de análise computacional. Empregou-se o MATLAB como ambiente de programação para o desenvolvimento de um software para o processamento digital de imagens. As imagens utilizadas foram adquiridas de dois bancos de imagens de acesso livre. Foram inclusas imagens clínicas de melanomas (n=15) e imagens de nevos (lesão melanocítica benigna) (n=15). Utilizaram-se imagens no canal de cor RGB, as quais foram convertidas para escala de cinza, aplicação de filtro de mediana 8x8 e técnica de aproximação por vizinhança 3x3. Após, procedeu-se a binarização e inversão de preto e branco para posterior extração das características do contorno da lesão. O classificador utilizado foi uma rede neural artificial de base radial, obtendo acerto diagnóstico para as imagens melanomas de 100% e para imagens benignas de 90,9%. Desta forma, o acerto global para predição diagnóstica foi de 95,5%. Obteve-se uma área sob a curva ROC de 0,967, o que sugere uma excelente capacidade de predição diagnóstica, sobretudo, com baixo custo de utilização, visto que o software pode ser executado na grande maioria dos sistemas operacionais hoje utilizados.EDUFU2017-07-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/3473810.14393/BJ-v33n4a2017-34738Bioscience Journal ; Vol. 33 No. 4 (2017): July/Aug.; 1065-1078Bioscience Journal ; v. 33 n. 4 (2017): July/Aug.; 1065-10781981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/34738/20678Brazil; ContemporaryCopyright (c) 2017 Gleidson Brandão Oselame, Ionildo José Sanches, Alana Kuntze, Eduardo Borba Neveshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessOselame, Gleidson BrandãoSanches, Ionildo JoséKuntze, AlanaNeves, Eduardo Borba2022-02-14T02:33:25Zoai:ojs.www.seer.ufu.br:article/34738Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-02-14T02:33:25Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Software for automatic diagnostic prediction of skin clinical images based on ABCD rule Software para predição diagnóstica automática de imagens clínicas da pele baseada na regra ABCD |
title |
Software for automatic diagnostic prediction of skin clinical images based on ABCD rule |
spellingShingle |
Software for automatic diagnostic prediction of skin clinical images based on ABCD rule Oselame, Gleidson Brandão Skin cancer Processing of digital images Computer vision Automatic diagnosis Health Sciences |
title_short |
Software for automatic diagnostic prediction of skin clinical images based on ABCD rule |
title_full |
Software for automatic diagnostic prediction of skin clinical images based on ABCD rule |
title_fullStr |
Software for automatic diagnostic prediction of skin clinical images based on ABCD rule |
title_full_unstemmed |
Software for automatic diagnostic prediction of skin clinical images based on ABCD rule |
title_sort |
Software for automatic diagnostic prediction of skin clinical images based on ABCD rule |
author |
Oselame, Gleidson Brandão |
author_facet |
Oselame, Gleidson Brandão Sanches, Ionildo José Kuntze, Alana Neves, Eduardo Borba |
author_role |
author |
author2 |
Sanches, Ionildo José Kuntze, Alana Neves, Eduardo Borba |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Oselame, Gleidson Brandão Sanches, Ionildo José Kuntze, Alana Neves, Eduardo Borba |
dc.subject.por.fl_str_mv |
Skin cancer Processing of digital images Computer vision Automatic diagnosis Health Sciences |
topic |
Skin cancer Processing of digital images Computer vision Automatic diagnosis Health Sciences |
description |
Cancer is responsible for about 7 million annual deaths worldwide. Among them, the melanoma type, responsible for 4% of the skin cancers, whose incidence has doubled in the last ten years. The processing of digital images has shown good potential for assistance in the early detection of melanomas. In this sense, the objective of the current study was to develop a software for clinical images processing and reach a score of accuracy higher than 95%. The ABCD rule was used as a guide for the development of computational analysis methods. MATLAB was used as programming environment for the development of the processing of digital images software. The images used were acquired from two banks of free images. They included images of melanomas (n=15) and nevi images (not cancer) (n=15). Images in RGB color channel were used, which were converted to grayscale, 8x8 median filter applications and 3x3 neighborhood approach technique. After, we proceeded to the binarization and inversion of black and white for later extraction of contour characteristics of the lesion. The classifier used was an artificial neural network of radial basis, getting accuracy for diagnosis of melanomas images of 100% and of 90.9% for not cancer images. Thus, global correction for diagnostic prediction was 95.5%. An area under the ROC graph 0.967 was achieved, suggesting a great diagnostic predictive ability. Besides, the software presents low cost use, since it can be run on most operating systems used nowadays. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07-25 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/34738 10.14393/BJ-v33n4a2017-34738 |
url |
https://seer.ufu.br/index.php/biosciencejournal/article/view/34738 |
identifier_str_mv |
10.14393/BJ-v33n4a2017-34738 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/34738/20678 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Brazil; Contemporary |
dc.publisher.none.fl_str_mv |
EDUFU |
publisher.none.fl_str_mv |
EDUFU |
dc.source.none.fl_str_mv |
Bioscience Journal ; Vol. 33 No. 4 (2017): July/Aug.; 1065-1078 Bioscience Journal ; v. 33 n. 4 (2017): July/Aug.; 1065-1078 1981-3163 reponame:Bioscience journal (Online) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Bioscience journal (Online) |
collection |
Bioscience journal (Online) |
repository.name.fl_str_mv |
Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
biosciencej@ufu.br|| |
_version_ |
1797069077075722240 |