Software for automatic diagnostic prediction of skin clinical images based on ABCD rule

Detalhes bibliográficos
Autor(a) principal: Oselame, Gleidson Brandão
Data de Publicação: 2017
Outros Autores: Sanches, Ionildo José, Kuntze, Alana, Neves, Eduardo Borba
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Bioscience journal (Online)
Texto Completo: https://seer.ufu.br/index.php/biosciencejournal/article/view/34738
Resumo: Cancer is responsible for about 7 million annual deaths worldwide. Among them, the melanoma type, responsible for 4% of the skin cancers, whose incidence has doubled in the last ten years. The processing of digital images has shown good potential for assistance in the early detection of melanomas. In this sense, the objective of the current study was to develop a software for clinical images processing and reach a score of accuracy higher than 95%. The ABCD rule was used as a guide for the development of computational analysis methods. MATLAB was used as programming environment for the development of the processing of digital images software. The images used were acquired from two banks of free images. They included images of melanomas (n=15) and nevi images (not cancer) (n=15). Images in RGB color channel were used, which were converted to grayscale, 8x8 median filter applications and 3x3 neighborhood approach technique. After, we proceeded to the binarization and inversion of black and white for later extraction of contour characteristics of the lesion. The classifier used was an artificial neural network of radial basis, getting accuracy for diagnosis of melanomas images of 100% and of 90.9% for not cancer images. Thus, global correction for diagnostic prediction was 95.5%. An area under the ROC graph 0.967 was achieved, suggesting a great diagnostic predictive ability. Besides, the software presents low cost use, since it can be run on most operating systems used nowadays.
id UFU-14_053bcca6b2f0a46bde51db5503f60613
oai_identifier_str oai:ojs.www.seer.ufu.br:article/34738
network_acronym_str UFU-14
network_name_str Bioscience journal (Online)
repository_id_str
spelling Software for automatic diagnostic prediction of skin clinical images based on ABCD rule Software para predição diagnóstica automática de imagens clínicas da pele baseada na regra ABCDSkin cancerProcessing of digital imagesComputer visionAutomatic diagnosisHealth SciencesCancer is responsible for about 7 million annual deaths worldwide. Among them, the melanoma type, responsible for 4% of the skin cancers, whose incidence has doubled in the last ten years. The processing of digital images has shown good potential for assistance in the early detection of melanomas. In this sense, the objective of the current study was to develop a software for clinical images processing and reach a score of accuracy higher than 95%. The ABCD rule was used as a guide for the development of computational analysis methods. MATLAB was used as programming environment for the development of the processing of digital images software. The images used were acquired from two banks of free images. They included images of melanomas (n=15) and nevi images (not cancer) (n=15). Images in RGB color channel were used, which were converted to grayscale, 8x8 median filter applications and 3x3 neighborhood approach technique. After, we proceeded to the binarization and inversion of black and white for later extraction of contour characteristics of the lesion. The classifier used was an artificial neural network of radial basis, getting accuracy for diagnosis of melanomas images of 100% and of 90.9% for not cancer images. Thus, global correction for diagnostic prediction was 95.5%. An area under the ROC graph 0.967 was achieved, suggesting a great diagnostic predictive ability. Besides, the software presents low cost use, since it can be run on most operating systems used nowadays.O câncer é responsável por cerca de 7 milhões de óbitos anuais em todo o mundo. Entre eles, o tipo melanoma, responsável por 4% dos cânceres de pele, cuja incidência dobrou mundialmente nos últimos dez anos. O processamento digital de imagens tem mostrado um bom potencial para auxiliar no diagnóstico precoce de melanomas. Neste sentido, objetivo do presente estudo foi desenvolver um software para processamento digital de imagens clínicas para diagnóstico automático baseado na regra ABCD que alcançasse um percentual de acerto maior do que 95% dos casos. Utilizou-se como norteador a regra ABCD para o desenvolvimento de métodos de análise computacional. Empregou-se o MATLAB como ambiente de programação para o desenvolvimento de um software para o processamento digital de imagens. As imagens utilizadas foram adquiridas de dois bancos de imagens de acesso livre. Foram inclusas imagens clínicas de melanomas (n=15) e imagens de nevos (lesão melanocítica benigna) (n=15). Utilizaram-se imagens no canal de cor RGB, as quais foram convertidas para escala de cinza, aplicação de filtro de mediana 8x8 e técnica de aproximação por vizinhança 3x3. Após, procedeu-se a binarização e inversão de preto e branco para posterior extração das características do contorno da lesão. O classificador utilizado foi uma rede neural artificial de base radial, obtendo acerto diagnóstico para as imagens melanomas de 100% e para imagens benignas de 90,9%. Desta forma, o acerto global para predição diagnóstica foi de 95,5%. Obteve-se uma área sob a curva ROC de 0,967, o que sugere uma excelente capacidade de predição diagnóstica, sobretudo, com baixo custo de utilização, visto que o software pode ser executado na grande maioria dos sistemas operacionais hoje utilizados.EDUFU2017-07-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/3473810.14393/BJ-v33n4a2017-34738Bioscience Journal ; Vol. 33 No. 4 (2017): July/Aug.; 1065-1078Bioscience Journal ; v. 33 n. 4 (2017): July/Aug.; 1065-10781981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/34738/20678Brazil; ContemporaryCopyright (c) 2017 Gleidson Brandão Oselame, Ionildo José Sanches, Alana Kuntze, Eduardo Borba Neveshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessOselame, Gleidson BrandãoSanches, Ionildo JoséKuntze, AlanaNeves, Eduardo Borba2022-02-14T02:33:25Zoai:ojs.www.seer.ufu.br:article/34738Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-02-14T02:33:25Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Software for automatic diagnostic prediction of skin clinical images based on ABCD rule
Software para predição diagnóstica automática de imagens clínicas da pele baseada na regra ABCD
title Software for automatic diagnostic prediction of skin clinical images based on ABCD rule
spellingShingle Software for automatic diagnostic prediction of skin clinical images based on ABCD rule
Oselame, Gleidson Brandão
Skin cancer
Processing of digital images
Computer vision
Automatic diagnosis
Health Sciences
title_short Software for automatic diagnostic prediction of skin clinical images based on ABCD rule
title_full Software for automatic diagnostic prediction of skin clinical images based on ABCD rule
title_fullStr Software for automatic diagnostic prediction of skin clinical images based on ABCD rule
title_full_unstemmed Software for automatic diagnostic prediction of skin clinical images based on ABCD rule
title_sort Software for automatic diagnostic prediction of skin clinical images based on ABCD rule
author Oselame, Gleidson Brandão
author_facet Oselame, Gleidson Brandão
Sanches, Ionildo José
Kuntze, Alana
Neves, Eduardo Borba
author_role author
author2 Sanches, Ionildo José
Kuntze, Alana
Neves, Eduardo Borba
author2_role author
author
author
dc.contributor.author.fl_str_mv Oselame, Gleidson Brandão
Sanches, Ionildo José
Kuntze, Alana
Neves, Eduardo Borba
dc.subject.por.fl_str_mv Skin cancer
Processing of digital images
Computer vision
Automatic diagnosis
Health Sciences
topic Skin cancer
Processing of digital images
Computer vision
Automatic diagnosis
Health Sciences
description Cancer is responsible for about 7 million annual deaths worldwide. Among them, the melanoma type, responsible for 4% of the skin cancers, whose incidence has doubled in the last ten years. The processing of digital images has shown good potential for assistance in the early detection of melanomas. In this sense, the objective of the current study was to develop a software for clinical images processing and reach a score of accuracy higher than 95%. The ABCD rule was used as a guide for the development of computational analysis methods. MATLAB was used as programming environment for the development of the processing of digital images software. The images used were acquired from two banks of free images. They included images of melanomas (n=15) and nevi images (not cancer) (n=15). Images in RGB color channel were used, which were converted to grayscale, 8x8 median filter applications and 3x3 neighborhood approach technique. After, we proceeded to the binarization and inversion of black and white for later extraction of contour characteristics of the lesion. The classifier used was an artificial neural network of radial basis, getting accuracy for diagnosis of melanomas images of 100% and of 90.9% for not cancer images. Thus, global correction for diagnostic prediction was 95.5%. An area under the ROC graph 0.967 was achieved, suggesting a great diagnostic predictive ability. Besides, the software presents low cost use, since it can be run on most operating systems used nowadays.
publishDate 2017
dc.date.none.fl_str_mv 2017-07-25
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/34738
10.14393/BJ-v33n4a2017-34738
url https://seer.ufu.br/index.php/biosciencejournal/article/view/34738
identifier_str_mv 10.14393/BJ-v33n4a2017-34738
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/34738/20678
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Brazil; Contemporary
dc.publisher.none.fl_str_mv EDUFU
publisher.none.fl_str_mv EDUFU
dc.source.none.fl_str_mv Bioscience Journal ; Vol. 33 No. 4 (2017): July/Aug.; 1065-1078
Bioscience Journal ; v. 33 n. 4 (2017): July/Aug.; 1065-1078
1981-3163
reponame:Bioscience journal (Online)
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Bioscience journal (Online)
collection Bioscience journal (Online)
repository.name.fl_str_mv Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv biosciencej@ufu.br||
_version_ 1797069077075722240