Photosynthetic production of wheat under precision planting patterns in northern china
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Bioscience journal (Online) |
Texto Completo: | https://seer.ufu.br/index.php/biosciencejournal/article/view/30328 |
Resumo: | Winter wheat (Triticum aestivum) is cultivated across a wide region; however, water is scarce during the growing season of wheat in the Northern Plain of China. Therefore, winter wheat should be irrigated to maintain a stable and high grain yield. The aim of this field study was to develop a water-conserving precision planting pattern for winter wheat that is grown in the Northern China Plain with the purpose of exploring the benefits in maintaining water and effects on wheat productivity. To accomplish this, several production variables and photosynthetic indexes were measured, including the number of stems, the leaf area index (LAI), photosynthetically available radiation (PAR), net photosynthetic rate, and grain yield. The study was carried out during the 2011–2012 and 2012–2013 winter wheat growing seasons. The experiment included a double-row planting pattern (DRPP) and a single-row planting pattern (SRPP), both of which were either irrigated or rainfed. The area of each plot was 9 m2, and the experimental design was a randomized blocks design with three replicates. All results were analyzed with an ANOVA, the F test, and the LSD (p ≤ 0.05) for means comparison. PAR capture ratios in the DRPP were higher than those in the SRPP at 50–120 cm above the ground. The photosynthetic traits of flag leaves under irrigated conditions were not significantly influenced by the respective planting pattern. However, at a growth stage of 80 under the rainfed conditions, the mean photosynthetic rate within flag leaves in the DRPP was higher than that in the SRPP. Furthermore, the DRPP under rainfed conditions was more likely to increase the apparent quantum yield (AQY) of flag leaves than the yield obtained under irrigation. These results suggest that DRPP optimizes the canopy PAR distribution in winter wheat and contributes to the maintenance of a higher photosynthetic capacity in the flag leaves under water stress (the rainfed condition). This relationship may be applied in demonstration trials to encourage winter wheat farmers to incorporate the use of DRPP in the drought-prone areas, which are subjected to insufficient precipitation during the growing stage of wheat in Northern China. |
id |
UFU-14_07afcb822e1ae18d676dc802f9a9ce95 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/30328 |
network_acronym_str |
UFU-14 |
network_name_str |
Bioscience journal (Online) |
repository_id_str |
|
spelling |
Photosynthetic production of wheat under precision planting patterns in northern china Produção fotossintética de trigo através de padrões de plantação de precisão no norte da ChinaTriticum aestivumPAR capture ratioNet photosynthetic rateLeaf area indexYield componentsAgricultural SciencesWinter wheat (Triticum aestivum) is cultivated across a wide region; however, water is scarce during the growing season of wheat in the Northern Plain of China. Therefore, winter wheat should be irrigated to maintain a stable and high grain yield. The aim of this field study was to develop a water-conserving precision planting pattern for winter wheat that is grown in the Northern China Plain with the purpose of exploring the benefits in maintaining water and effects on wheat productivity. To accomplish this, several production variables and photosynthetic indexes were measured, including the number of stems, the leaf area index (LAI), photosynthetically available radiation (PAR), net photosynthetic rate, and grain yield. The study was carried out during the 2011–2012 and 2012–2013 winter wheat growing seasons. The experiment included a double-row planting pattern (DRPP) and a single-row planting pattern (SRPP), both of which were either irrigated or rainfed. The area of each plot was 9 m2, and the experimental design was a randomized blocks design with three replicates. All results were analyzed with an ANOVA, the F test, and the LSD (p ≤ 0.05) for means comparison. PAR capture ratios in the DRPP were higher than those in the SRPP at 50–120 cm above the ground. The photosynthetic traits of flag leaves under irrigated conditions were not significantly influenced by the respective planting pattern. However, at a growth stage of 80 under the rainfed conditions, the mean photosynthetic rate within flag leaves in the DRPP was higher than that in the SRPP. Furthermore, the DRPP under rainfed conditions was more likely to increase the apparent quantum yield (AQY) of flag leaves than the yield obtained under irrigation. These results suggest that DRPP optimizes the canopy PAR distribution in winter wheat and contributes to the maintenance of a higher photosynthetic capacity in the flag leaves under water stress (the rainfed condition). This relationship may be applied in demonstration trials to encourage winter wheat farmers to incorporate the use of DRPP in the drought-prone areas, which are subjected to insufficient precipitation during the growing stage of wheat in Northern China. O trigo de inverno (Triticum aestivum) é cultivado em uma vasta região; no entanto, a água é escassa durante a estação de crescimento do trigo na Planície do Norte da China. Assim, o trigo de inverno deve ser irrigado para manter um rendimento de grãos estável e elevado. O objetivo deste trabalho de campo foi o de desenvolver um padrão de plantação de precisão que conserve a água para o trigo de inverno que é cultivado na Planície do Norte da China com o propósito de explorar os benefícios da retenção de água e os efeitos na produtividade do trigo. Para isso, diversas variáveis de produção e índices fotossintéticos foram medidos, incluindo o número de hastes, o índice de área da folha (do inglês, LAI - leaf area index), a radiação fotossinteticamente disponível (do inglês, PAR - photosynthetically available radiation), taxa fotossintética líquida e o rendimento de grãos. O estudo foi conduzido durante as estações de crescimento do trigo de inverno em 2011-2012 e 2012-2013. O experimento incluiu um padrão de plantação em fila dupla (do inglês, DRPP - double-row planting pattern) e um padrão de plantação em fila única (do inglês, SRPP - single-row planting pattern), em ambos os casos ou foram irrigados artificialmente ou através da chuva (regadio e sequeiro). A área de cada lote de terra foi de 9 m2, e o delineamento experimental foi um de blocos aleatórios com três repetições. Todos os resultados foram analisados com uma ANOVA, um teste F, e um LSD (p ≤ 0.05) para a comparação das médias. As taxas de captura de PAR no DRPP foram maiores do que aquelas no SRPP a 50-120 cm acima do solo. As características fotossintéticas das folhas-bandeira (do inglês, flag leaves) sob condições de irrigação artificial não foram significativamente influenciadas pelo respectivo padrão de plantação. No entanto, num estágio de crescimento de 80% abaixo das condições de irrigação pela chuva, a taxa fotossintética média dentre as folhas-bandeira no DRPP foi maior que aquela observada no SRPP. Além disso, o DRPP sob condições de irrigação pela chuva foi mais suscetível ao aumento do rendimento quântico aparente (do inglês, AQY - apparent quantum yield) das folhas-bandeira do que o rendimento obtido através da irrigação artificial. Estes resultados sugerem que o DRPP otimiza a distribuição PAR do dossel no trigo de inverno e contribui para a manutenção de uma maior capacidade fotossintética nas folhas bandeira sob estresse hídrico (a condição de sequeiro). Esta relação pode ser aplicada em ensaios de demonstração para encorajar os agricultores de trigo de inverno a incorporar o uso do DRPP em áreas propensas à seca, que estão submetidas a precipitação insuficiente durante a fase de crescimento do trigo no Norte da China.EDUFU2017-02-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/3032810.14393/BJ-v33n1a2017-30328Bioscience Journal ; Vol. 33 No. 1 (2017): Jan./Feb.; 1-9,Bioscience Journal ; v. 33 n. 1 (2017): Jan./Feb.; 1-9,1981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/30328/19743China; ContemporaryCopyright (c) 2017 Zhen Zhang, Xiang Min Mao, Wen Wen Zhong, Zhi Bo Feng, Xun Bo Zhouhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessZhang, ZhenMao, Xiang MinZhong, Wen WenFeng, Zhi BoZhou, Xun Bo2022-02-16T11:43:56Zoai:ojs.www.seer.ufu.br:article/30328Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-02-16T11:43:56Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Photosynthetic production of wheat under precision planting patterns in northern china Produção fotossintética de trigo através de padrões de plantação de precisão no norte da China |
title |
Photosynthetic production of wheat under precision planting patterns in northern china |
spellingShingle |
Photosynthetic production of wheat under precision planting patterns in northern china Zhang, Zhen Triticum aestivum PAR capture ratio Net photosynthetic rate Leaf area index Yield components Agricultural Sciences |
title_short |
Photosynthetic production of wheat under precision planting patterns in northern china |
title_full |
Photosynthetic production of wheat under precision planting patterns in northern china |
title_fullStr |
Photosynthetic production of wheat under precision planting patterns in northern china |
title_full_unstemmed |
Photosynthetic production of wheat under precision planting patterns in northern china |
title_sort |
Photosynthetic production of wheat under precision planting patterns in northern china |
author |
Zhang, Zhen |
author_facet |
Zhang, Zhen Mao, Xiang Min Zhong, Wen Wen Feng, Zhi Bo Zhou, Xun Bo |
author_role |
author |
author2 |
Mao, Xiang Min Zhong, Wen Wen Feng, Zhi Bo Zhou, Xun Bo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Zhang, Zhen Mao, Xiang Min Zhong, Wen Wen Feng, Zhi Bo Zhou, Xun Bo |
dc.subject.por.fl_str_mv |
Triticum aestivum PAR capture ratio Net photosynthetic rate Leaf area index Yield components Agricultural Sciences |
topic |
Triticum aestivum PAR capture ratio Net photosynthetic rate Leaf area index Yield components Agricultural Sciences |
description |
Winter wheat (Triticum aestivum) is cultivated across a wide region; however, water is scarce during the growing season of wheat in the Northern Plain of China. Therefore, winter wheat should be irrigated to maintain a stable and high grain yield. The aim of this field study was to develop a water-conserving precision planting pattern for winter wheat that is grown in the Northern China Plain with the purpose of exploring the benefits in maintaining water and effects on wheat productivity. To accomplish this, several production variables and photosynthetic indexes were measured, including the number of stems, the leaf area index (LAI), photosynthetically available radiation (PAR), net photosynthetic rate, and grain yield. The study was carried out during the 2011–2012 and 2012–2013 winter wheat growing seasons. The experiment included a double-row planting pattern (DRPP) and a single-row planting pattern (SRPP), both of which were either irrigated or rainfed. The area of each plot was 9 m2, and the experimental design was a randomized blocks design with three replicates. All results were analyzed with an ANOVA, the F test, and the LSD (p ≤ 0.05) for means comparison. PAR capture ratios in the DRPP were higher than those in the SRPP at 50–120 cm above the ground. The photosynthetic traits of flag leaves under irrigated conditions were not significantly influenced by the respective planting pattern. However, at a growth stage of 80 under the rainfed conditions, the mean photosynthetic rate within flag leaves in the DRPP was higher than that in the SRPP. Furthermore, the DRPP under rainfed conditions was more likely to increase the apparent quantum yield (AQY) of flag leaves than the yield obtained under irrigation. These results suggest that DRPP optimizes the canopy PAR distribution in winter wheat and contributes to the maintenance of a higher photosynthetic capacity in the flag leaves under water stress (the rainfed condition). This relationship may be applied in demonstration trials to encourage winter wheat farmers to incorporate the use of DRPP in the drought-prone areas, which are subjected to insufficient precipitation during the growing stage of wheat in Northern China. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/30328 10.14393/BJ-v33n1a2017-30328 |
url |
https://seer.ufu.br/index.php/biosciencejournal/article/view/30328 |
identifier_str_mv |
10.14393/BJ-v33n1a2017-30328 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/30328/19743 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 Zhen Zhang, Xiang Min Mao, Wen Wen Zhong, Zhi Bo Feng, Xun Bo Zhou https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Zhen Zhang, Xiang Min Mao, Wen Wen Zhong, Zhi Bo Feng, Xun Bo Zhou https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
China; Contemporary |
dc.publisher.none.fl_str_mv |
EDUFU |
publisher.none.fl_str_mv |
EDUFU |
dc.source.none.fl_str_mv |
Bioscience Journal ; Vol. 33 No. 1 (2017): Jan./Feb.; 1-9, Bioscience Journal ; v. 33 n. 1 (2017): Jan./Feb.; 1-9, 1981-3163 reponame:Bioscience journal (Online) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Bioscience journal (Online) |
collection |
Bioscience journal (Online) |
repository.name.fl_str_mv |
Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
biosciencej@ufu.br|| |
_version_ |
1797069075897122816 |