In situ remote sensing as a strategy to predict cotton seed yield
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Bioscience journal (Online) |
Texto Completo: | https://seer.ufu.br/index.php/biosciencejournal/article/view/42261 |
Resumo: | Crop harvest scheduling and profits and losses predications require strategies that estimate crop yield. This work aimed to investigate the contribution of phenological variables using path analysis and remote sensing techniques on cotton boll yield and to generate a model using decision trees that help predict cotton boll yield. The sampling field was installed in Chapadão do Céu, in an area of 90 ha. The following phenological variables were evaluated at 30 sample points: plant height at 26, 39, 51, 68, 82, 107, 128, and 185 days after emergence (DAE); number of floral buds at 68, 81, 107, 128, and 185 DAE; number of bolls at 185 DAE; Rededge vegetation index at 23, 35, 53, 91, and 168 DAE; and cotton boll yield. The main variables that can be used to predict cotton boll yield are the number of floral buds (at 107 days after emergence) and the Rededge vegetation index (at 53 and 91 days after emergence). To obtain higher cotton boll yields, the Rededge vegetation index must be greater than 39 at 53 days after emergence, and the plant must present at least 14 floral buds at 107 days after emergence. |
id |
UFU-14_6ff68872468bcc6977f519808c2faf46 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/42261 |
network_acronym_str |
UFU-14 |
network_name_str |
Bioscience journal (Online) |
repository_id_str |
|
spelling |
In situ remote sensing as a strategy to predict cotton seed yieldSensoriamento remoto in situ como estratégia para previsão do rendimento de semente de algodãoprecision agriculturepath analysisdecision treesGossypium hirsutumAgricultural SciencesCrop harvest scheduling and profits and losses predications require strategies that estimate crop yield. This work aimed to investigate the contribution of phenological variables using path analysis and remote sensing techniques on cotton boll yield and to generate a model using decision trees that help predict cotton boll yield. The sampling field was installed in Chapadão do Céu, in an area of 90 ha. The following phenological variables were evaluated at 30 sample points: plant height at 26, 39, 51, 68, 82, 107, 128, and 185 days after emergence (DAE); number of floral buds at 68, 81, 107, 128, and 185 DAE; number of bolls at 185 DAE; Rededge vegetation index at 23, 35, 53, 91, and 168 DAE; and cotton boll yield. The main variables that can be used to predict cotton boll yield are the number of floral buds (at 107 days after emergence) and the Rededge vegetation index (at 53 and 91 days after emergence). To obtain higher cotton boll yields, the Rededge vegetation index must be greater than 39 at 53 days after emergence, and the plant must present at least 14 floral buds at 107 days after emergence.O escalonamento de colheitas e a previsão de ganhos e perdas requerem estratégias que estimam a produtividade das culturas. Este trabalho teve como objetivo investigar a contribuição de variáveis fenológicas utilizando técnicas de análise de trilha e sensoriamento remoto sobre a produtividade de algodão em caroço e gerar um modelo utilizando árvores de decisão que ajudam a prever esta variável. O campo de amostragem foi instalado em Chapadão do Céu, em uma área de 90 ha. As seguintes variáveis fenológicas foram avaliadas em 30 pontos amostrais: altura das plantas aos 26, 39, 51, 68, 82, 107, 128 e 185 dias após a emergência (DAE); número de gemas florais aos 68, 81, 107, 128 e 185 DAE; número de cápsulas a 185 DAE; Índice de vegetação Rededge em 23, 35, 53, 91 e 168 DAE; e produção de algodão em caroço. As principais variáveis que podem ser utilizadas para prever a produção de caroço de algodão são o número de gemas florais (aos 107 dias após a emergência) e o índice de vegetação de Rededge (aos 53 e 91 dias após a emergência). Para obter maiores produtividades de algodão, o índice de vegetação de Rededge deve ser superior a 39 aos 53 dias após a emergência e a planta deve apresentar pelo menos 14 gemas florais aos 107 dias após a emergência.EDUFU2019-12-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/4226110.14393/BJ-v35n6a2019-42261Bioscience Journal ; Vol. 35 No. 6 (2019): Nov./Dec.; 1847-1854Bioscience Journal ; v. 35 n. 6 (2019): Nov./Dec.; 1847-18541981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/42261/27469Brazil; ContemporaryCopyright (c) 2019 Fabio Henrique Rojo Baio, Eder Eujácio da Silva, Pedro Henrique Alves Martins, Carlos Antônio da Silva Junior, Paulo Eduardo Teodorohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBaio, Fabio Henrique Rojo da Silva, Eder Eujácio Martins, Pedro Henrique Alves Silva Junior, Carlos Antônio daTeodoro, Paulo Eduardo2022-01-24T13:26:02Zoai:ojs.www.seer.ufu.br:article/42261Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-01-24T13:26:02Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
In situ remote sensing as a strategy to predict cotton seed yield Sensoriamento remoto in situ como estratégia para previsão do rendimento de semente de algodão |
title |
In situ remote sensing as a strategy to predict cotton seed yield |
spellingShingle |
In situ remote sensing as a strategy to predict cotton seed yield Baio, Fabio Henrique Rojo precision agriculture path analysis decision trees Gossypium hirsutum Agricultural Sciences |
title_short |
In situ remote sensing as a strategy to predict cotton seed yield |
title_full |
In situ remote sensing as a strategy to predict cotton seed yield |
title_fullStr |
In situ remote sensing as a strategy to predict cotton seed yield |
title_full_unstemmed |
In situ remote sensing as a strategy to predict cotton seed yield |
title_sort |
In situ remote sensing as a strategy to predict cotton seed yield |
author |
Baio, Fabio Henrique Rojo |
author_facet |
Baio, Fabio Henrique Rojo da Silva, Eder Eujácio Martins, Pedro Henrique Alves Silva Junior, Carlos Antônio da Teodoro, Paulo Eduardo |
author_role |
author |
author2 |
da Silva, Eder Eujácio Martins, Pedro Henrique Alves Silva Junior, Carlos Antônio da Teodoro, Paulo Eduardo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Baio, Fabio Henrique Rojo da Silva, Eder Eujácio Martins, Pedro Henrique Alves Silva Junior, Carlos Antônio da Teodoro, Paulo Eduardo |
dc.subject.por.fl_str_mv |
precision agriculture path analysis decision trees Gossypium hirsutum Agricultural Sciences |
topic |
precision agriculture path analysis decision trees Gossypium hirsutum Agricultural Sciences |
description |
Crop harvest scheduling and profits and losses predications require strategies that estimate crop yield. This work aimed to investigate the contribution of phenological variables using path analysis and remote sensing techniques on cotton boll yield and to generate a model using decision trees that help predict cotton boll yield. The sampling field was installed in Chapadão do Céu, in an area of 90 ha. The following phenological variables were evaluated at 30 sample points: plant height at 26, 39, 51, 68, 82, 107, 128, and 185 days after emergence (DAE); number of floral buds at 68, 81, 107, 128, and 185 DAE; number of bolls at 185 DAE; Rededge vegetation index at 23, 35, 53, 91, and 168 DAE; and cotton boll yield. The main variables that can be used to predict cotton boll yield are the number of floral buds (at 107 days after emergence) and the Rededge vegetation index (at 53 and 91 days after emergence). To obtain higher cotton boll yields, the Rededge vegetation index must be greater than 39 at 53 days after emergence, and the plant must present at least 14 floral buds at 107 days after emergence. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-02 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/42261 10.14393/BJ-v35n6a2019-42261 |
url |
https://seer.ufu.br/index.php/biosciencejournal/article/view/42261 |
identifier_str_mv |
10.14393/BJ-v35n6a2019-42261 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/42261/27469 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Brazil; Contemporary |
dc.publisher.none.fl_str_mv |
EDUFU |
publisher.none.fl_str_mv |
EDUFU |
dc.source.none.fl_str_mv |
Bioscience Journal ; Vol. 35 No. 6 (2019): Nov./Dec.; 1847-1854 Bioscience Journal ; v. 35 n. 6 (2019): Nov./Dec.; 1847-1854 1981-3163 reponame:Bioscience journal (Online) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Bioscience journal (Online) |
collection |
Bioscience journal (Online) |
repository.name.fl_str_mv |
Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
biosciencej@ufu.br|| |
_version_ |
1797069080248713216 |