In situ remote sensing as a strategy to predict cotton seed yield

Detalhes bibliográficos
Autor(a) principal: Baio, Fabio Henrique Rojo
Data de Publicação: 2019
Outros Autores: da Silva, Eder Eujácio, Martins, Pedro Henrique Alves, Silva Junior, Carlos Antônio da, Teodoro, Paulo Eduardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Bioscience journal (Online)
Texto Completo: https://seer.ufu.br/index.php/biosciencejournal/article/view/42261
Resumo: Crop harvest scheduling and profits and losses predications require strategies that estimate crop yield. This work aimed to investigate the contribution of phenological variables using path analysis and remote sensing techniques on cotton boll yield and to generate a model using decision trees that help predict cotton boll yield. The sampling field was installed in Chapadão do Céu, in an area of 90 ha. The following phenological variables were evaluated at 30 sample points: plant height at 26, 39, 51, 68, 82, 107, 128, and 185 days after emergence (DAE); number of floral buds at 68, 81, 107, 128, and 185 DAE; number of bolls at 185 DAE; Rededge vegetation index at 23, 35, 53, 91, and 168 DAE; and cotton boll yield. The main variables that can be used to predict cotton boll yield are the number of floral buds (at 107 days after emergence) and the Rededge vegetation index (at 53 and 91 days after emergence). To obtain higher cotton boll yields, the Rededge vegetation index must be greater than 39 at 53 days after emergence, and the plant must present at least 14 floral buds at 107 days after emergence.
id UFU-14_6ff68872468bcc6977f519808c2faf46
oai_identifier_str oai:ojs.www.seer.ufu.br:article/42261
network_acronym_str UFU-14
network_name_str Bioscience journal (Online)
repository_id_str
spelling In situ remote sensing as a strategy to predict cotton seed yieldSensoriamento remoto in situ como estratégia para previsão do rendimento de semente de algodãoprecision agriculturepath analysisdecision treesGossypium hirsutumAgricultural SciencesCrop harvest scheduling and profits and losses predications require strategies that estimate crop yield. This work aimed to investigate the contribution of phenological variables using path analysis and remote sensing techniques on cotton boll yield and to generate a model using decision trees that help predict cotton boll yield. The sampling field was installed in Chapadão do Céu, in an area of 90 ha. The following phenological variables were evaluated at 30 sample points: plant height at 26, 39, 51, 68, 82, 107, 128, and 185 days after emergence (DAE); number of floral buds at 68, 81, 107, 128, and 185 DAE; number of bolls at 185 DAE; Rededge vegetation index at 23, 35, 53, 91, and 168 DAE; and cotton boll yield. The main variables that can be used to predict cotton boll yield are the number of floral buds (at 107 days after emergence) and the Rededge vegetation index (at 53 and 91 days after emergence). To obtain higher cotton boll yields, the Rededge vegetation index must be greater than 39 at 53 days after emergence, and the plant must present at least 14 floral buds at 107 days after emergence.O escalonamento de colheitas e a previsão de ganhos e perdas requerem estratégias que estimam a produtividade das culturas. Este trabalho teve como objetivo investigar a contribuição de variáveis fenológicas utilizando técnicas de análise de trilha e sensoriamento remoto sobre a produtividade de algodão em caroço e gerar um modelo utilizando árvores de decisão que ajudam a prever esta variável. O campo de amostragem foi instalado em Chapadão do Céu, em uma área de 90 ha. As seguintes variáveis fenológicas foram avaliadas em 30 pontos amostrais: altura das plantas aos 26, 39, 51, 68, 82, 107, 128 e 185 dias após a emergência (DAE); número de gemas florais aos 68, 81, 107, 128 e 185 DAE; número de cápsulas a 185 DAE; Índice de vegetação Rededge em 23, 35, 53, 91 e 168 DAE; e produção de algodão em caroço. As principais variáveis que podem ser utilizadas para prever a produção de caroço de algodão são o número de gemas florais (aos 107 dias após a emergência) e o índice de vegetação de Rededge (aos 53 e 91 dias após a emergência). Para obter maiores produtividades de algodão, o índice de vegetação de Rededge deve ser superior a 39 aos 53 dias após a emergência e a planta deve apresentar pelo menos 14 gemas florais aos 107 dias após a emergência.EDUFU2019-12-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/4226110.14393/BJ-v35n6a2019-42261Bioscience Journal ; Vol. 35 No. 6 (2019): Nov./Dec.; 1847-1854Bioscience Journal ; v. 35 n. 6 (2019): Nov./Dec.; 1847-18541981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/42261/27469Brazil; ContemporaryCopyright (c) 2019 Fabio Henrique Rojo Baio, Eder Eujácio da Silva, Pedro Henrique Alves Martins, Carlos Antônio da Silva Junior, Paulo Eduardo Teodorohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBaio, Fabio Henrique Rojo da Silva, Eder Eujácio Martins, Pedro Henrique Alves Silva Junior, Carlos Antônio daTeodoro, Paulo Eduardo2022-01-24T13:26:02Zoai:ojs.www.seer.ufu.br:article/42261Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-01-24T13:26:02Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv In situ remote sensing as a strategy to predict cotton seed yield
Sensoriamento remoto in situ como estratégia para previsão do rendimento de semente de algodão
title In situ remote sensing as a strategy to predict cotton seed yield
spellingShingle In situ remote sensing as a strategy to predict cotton seed yield
Baio, Fabio Henrique Rojo
precision agriculture
path analysis
decision trees
Gossypium hirsutum
Agricultural Sciences
title_short In situ remote sensing as a strategy to predict cotton seed yield
title_full In situ remote sensing as a strategy to predict cotton seed yield
title_fullStr In situ remote sensing as a strategy to predict cotton seed yield
title_full_unstemmed In situ remote sensing as a strategy to predict cotton seed yield
title_sort In situ remote sensing as a strategy to predict cotton seed yield
author Baio, Fabio Henrique Rojo
author_facet Baio, Fabio Henrique Rojo
da Silva, Eder Eujácio
Martins, Pedro Henrique Alves
Silva Junior, Carlos Antônio da
Teodoro, Paulo Eduardo
author_role author
author2 da Silva, Eder Eujácio
Martins, Pedro Henrique Alves
Silva Junior, Carlos Antônio da
Teodoro, Paulo Eduardo
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Baio, Fabio Henrique Rojo
da Silva, Eder Eujácio
Martins, Pedro Henrique Alves
Silva Junior, Carlos Antônio da
Teodoro, Paulo Eduardo
dc.subject.por.fl_str_mv precision agriculture
path analysis
decision trees
Gossypium hirsutum
Agricultural Sciences
topic precision agriculture
path analysis
decision trees
Gossypium hirsutum
Agricultural Sciences
description Crop harvest scheduling and profits and losses predications require strategies that estimate crop yield. This work aimed to investigate the contribution of phenological variables using path analysis and remote sensing techniques on cotton boll yield and to generate a model using decision trees that help predict cotton boll yield. The sampling field was installed in Chapadão do Céu, in an area of 90 ha. The following phenological variables were evaluated at 30 sample points: plant height at 26, 39, 51, 68, 82, 107, 128, and 185 days after emergence (DAE); number of floral buds at 68, 81, 107, 128, and 185 DAE; number of bolls at 185 DAE; Rededge vegetation index at 23, 35, 53, 91, and 168 DAE; and cotton boll yield. The main variables that can be used to predict cotton boll yield are the number of floral buds (at 107 days after emergence) and the Rededge vegetation index (at 53 and 91 days after emergence). To obtain higher cotton boll yields, the Rededge vegetation index must be greater than 39 at 53 days after emergence, and the plant must present at least 14 floral buds at 107 days after emergence.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-02
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/42261
10.14393/BJ-v35n6a2019-42261
url https://seer.ufu.br/index.php/biosciencejournal/article/view/42261
identifier_str_mv 10.14393/BJ-v35n6a2019-42261
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/42261/27469
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Brazil; Contemporary
dc.publisher.none.fl_str_mv EDUFU
publisher.none.fl_str_mv EDUFU
dc.source.none.fl_str_mv Bioscience Journal ; Vol. 35 No. 6 (2019): Nov./Dec.; 1847-1854
Bioscience Journal ; v. 35 n. 6 (2019): Nov./Dec.; 1847-1854
1981-3163
reponame:Bioscience journal (Online)
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Bioscience journal (Online)
collection Bioscience journal (Online)
repository.name.fl_str_mv Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv biosciencej@ufu.br||
_version_ 1797069080248713216