Demand forecast in the emergency department in Minas Gerais, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Bioscience journal (Online) |
Texto Completo: | https://seer.ufu.br/index.php/biosciencejournal/article/view/46115 |
Resumo: | This study presents a mathematical model to carry out the demand forecasts in relation to patientes classified as green in the emergency department of a municipality in Minas Gerais, Brazil. In addition, another approach will investigate whether the green patients demand remains the same over the weekend, as compared to the weekdays, since there is no support from Primary Health Care units over the weekend. A retrospective study of the emergency service in the municipality of Monte Carmelo was carried out from January 2014 to December 2017.The time series of the patients classified as green during the host by the nurse, according to the Manchester Triage Scale, was analyzed in the temporal domain for the construction of a parametric model with the purpose of realizing the demand forecast. The Manchester Triage Scale has been adopted in most emergency department as a guiding instrument for risk classification, prioritizing the most serious cases. The data processing was fulfilled using Software R Version 3.4. The ARIMA model (1,1,1) presented a better fit for this forecast. The predictions of this model are values close to those observed for the number of patients seen that ranges from 1780.4 to 1796.6 patients per month. In relation to the demand of patients classified as green at the weekend, it has shown that it is slightly lower than the weekend, but it is still an expressive demand. The application of the models must be seen by the managers as a tool to aid decisions, thus it must support processes of planning, management and evaluation of public policies. In this context, mathematical models for demand forecasting are an instrument for management care and services. |
id |
UFU-14_72c9e2203b8583062cc416bf8d4947ab |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/46115 |
network_acronym_str |
UFU-14 |
network_name_str |
Bioscience journal (Online) |
repository_id_str |
|
spelling |
Demand forecast in the emergency department in Minas Gerais, BrazilPrevisão de demanda no departamento de emergência em Minas Gerais, BrasilTriage.Health service needs and demands.Public health.Health SciencesThis study presents a mathematical model to carry out the demand forecasts in relation to patientes classified as green in the emergency department of a municipality in Minas Gerais, Brazil. In addition, another approach will investigate whether the green patients demand remains the same over the weekend, as compared to the weekdays, since there is no support from Primary Health Care units over the weekend. A retrospective study of the emergency service in the municipality of Monte Carmelo was carried out from January 2014 to December 2017.The time series of the patients classified as green during the host by the nurse, according to the Manchester Triage Scale, was analyzed in the temporal domain for the construction of a parametric model with the purpose of realizing the demand forecast. The Manchester Triage Scale has been adopted in most emergency department as a guiding instrument for risk classification, prioritizing the most serious cases. The data processing was fulfilled using Software R Version 3.4. The ARIMA model (1,1,1) presented a better fit for this forecast. The predictions of this model are values close to those observed for the number of patients seen that ranges from 1780.4 to 1796.6 patients per month. In relation to the demand of patients classified as green at the weekend, it has shown that it is slightly lower than the weekend, but it is still an expressive demand. The application of the models must be seen by the managers as a tool to aid decisions, thus it must support processes of planning, management and evaluation of public policies. In this context, mathematical models for demand forecasting are an instrument for management care and services.Este estudo apresenta um modelo matemático para realizar as previsões de demanda em relação aos pacientes classificados como verdes no departamento de emergência de um município de Minas Gerais. Além disso, outra abordagem investigará se a demanda dos pacientes verdes permanece a mesma no final de semana, em relação aos dias da semana, uma vez que não há apoio das unidades de Atenção Primária de Saúde no final de semana. Um estudo retrospectivo do serviço de emergência no município de Monte Carmelo foi realizado no período de janeiro de 2014 a dezembro de 2017. A série temporal dos pacientes classificados como verdes durante o acolhimento pelo enfermeiro, segundo o Sistema de Triagem de Manchester, foi analisada no domínio temporal para a construção de um modelo paramétrico com a finalidade de realizar a previsão de demanda. O Sistema de Triagem de Manchester foi adotado na maioria dos serviços de emergência como instrumento orientador para a classificação de risco, priorizando os casos mais graves. O processamento de dados foi realizado usando o Software R Versão 3.4. O modelo ARIMA (1,1,1) apresentou melhor ajuste para essa previsão. As previsões deste modelo são valores próximos aos observados para o número de pacientes atendidos que variam de 1780.4 a 1796.6 pacientes por mês. Em relação à demanda de pacientes classificados como verdes no final de semana, constatou que é ligeiramente inferior a do fim de semana, mas ainda é uma demanda expressiva. A aplicação dos modelos deve ser vista pelos gestores como uma ferramenta para auxiliar as decisões, portanto, deve apoiar processos de planejamento, gestão e avaliação de políticas públicas. Nesse contexto, os modelos matemáticos para previsão de demanda são um instrumento de atendimento e serviços gerenciais.EDUFU2019-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/4611510.14393/BJ-v35n5a2019-46115Bioscience Journal ; Vol. 35 No. 5 (2019): Sept./Oct.; 1640-1650 Bioscience Journal ; v. 35 n. 5 (2019): Sept./Oct.; 1640-1650 1981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/46115/27090Brazil; ContemporaryCopyright (c) 2019 Franciele Guimarães de Brito, Elmiro Santos Resende, Aurélia Aparecida de Araújo Rodrigues, Marcelle Aparecida Barros Junqueira, Vívian Ribeiro Barreto, João Batista Destro Filhohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessde Brito, Franciele GuimarãesResende, Elmiro SantosRodrigues, Aurélia Aparecida de AraújoJunqueira, Marcelle Aparecida BarrosBarreto, Vívian RibeiroDestro Filho, João Batista2022-01-26T11:38:48Zoai:ojs.www.seer.ufu.br:article/46115Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-01-26T11:38:48Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Demand forecast in the emergency department in Minas Gerais, Brazil Previsão de demanda no departamento de emergência em Minas Gerais, Brasil |
title |
Demand forecast in the emergency department in Minas Gerais, Brazil |
spellingShingle |
Demand forecast in the emergency department in Minas Gerais, Brazil de Brito, Franciele Guimarães Triage. Health service needs and demands. Public health. Health Sciences |
title_short |
Demand forecast in the emergency department in Minas Gerais, Brazil |
title_full |
Demand forecast in the emergency department in Minas Gerais, Brazil |
title_fullStr |
Demand forecast in the emergency department in Minas Gerais, Brazil |
title_full_unstemmed |
Demand forecast in the emergency department in Minas Gerais, Brazil |
title_sort |
Demand forecast in the emergency department in Minas Gerais, Brazil |
author |
de Brito, Franciele Guimarães |
author_facet |
de Brito, Franciele Guimarães Resende, Elmiro Santos Rodrigues, Aurélia Aparecida de Araújo Junqueira, Marcelle Aparecida Barros Barreto, Vívian Ribeiro Destro Filho, João Batista |
author_role |
author |
author2 |
Resende, Elmiro Santos Rodrigues, Aurélia Aparecida de Araújo Junqueira, Marcelle Aparecida Barros Barreto, Vívian Ribeiro Destro Filho, João Batista |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
de Brito, Franciele Guimarães Resende, Elmiro Santos Rodrigues, Aurélia Aparecida de Araújo Junqueira, Marcelle Aparecida Barros Barreto, Vívian Ribeiro Destro Filho, João Batista |
dc.subject.por.fl_str_mv |
Triage. Health service needs and demands. Public health. Health Sciences |
topic |
Triage. Health service needs and demands. Public health. Health Sciences |
description |
This study presents a mathematical model to carry out the demand forecasts in relation to patientes classified as green in the emergency department of a municipality in Minas Gerais, Brazil. In addition, another approach will investigate whether the green patients demand remains the same over the weekend, as compared to the weekdays, since there is no support from Primary Health Care units over the weekend. A retrospective study of the emergency service in the municipality of Monte Carmelo was carried out from January 2014 to December 2017.The time series of the patients classified as green during the host by the nurse, according to the Manchester Triage Scale, was analyzed in the temporal domain for the construction of a parametric model with the purpose of realizing the demand forecast. The Manchester Triage Scale has been adopted in most emergency department as a guiding instrument for risk classification, prioritizing the most serious cases. The data processing was fulfilled using Software R Version 3.4. The ARIMA model (1,1,1) presented a better fit for this forecast. The predictions of this model are values close to those observed for the number of patients seen that ranges from 1780.4 to 1796.6 patients per month. In relation to the demand of patients classified as green at the weekend, it has shown that it is slightly lower than the weekend, but it is still an expressive demand. The application of the models must be seen by the managers as a tool to aid decisions, thus it must support processes of planning, management and evaluation of public policies. In this context, mathematical models for demand forecasting are an instrument for management care and services. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/46115 10.14393/BJ-v35n5a2019-46115 |
url |
https://seer.ufu.br/index.php/biosciencejournal/article/view/46115 |
identifier_str_mv |
10.14393/BJ-v35n5a2019-46115 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/46115/27090 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Brazil; Contemporary |
dc.publisher.none.fl_str_mv |
EDUFU |
publisher.none.fl_str_mv |
EDUFU |
dc.source.none.fl_str_mv |
Bioscience Journal ; Vol. 35 No. 5 (2019): Sept./Oct.; 1640-1650 Bioscience Journal ; v. 35 n. 5 (2019): Sept./Oct.; 1640-1650 1981-3163 reponame:Bioscience journal (Online) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Bioscience journal (Online) |
collection |
Bioscience journal (Online) |
repository.name.fl_str_mv |
Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
biosciencej@ufu.br|| |
_version_ |
1797069081030950912 |