Demand forecast in the emergency department in Minas Gerais, Brazil

Detalhes bibliográficos
Autor(a) principal: de Brito, Franciele Guimarães
Data de Publicação: 2019
Outros Autores: Resende, Elmiro Santos, Rodrigues, Aurélia Aparecida de Araújo, Junqueira, Marcelle Aparecida Barros, Barreto, Vívian Ribeiro, Destro Filho, João Batista
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Bioscience journal (Online)
Texto Completo: https://seer.ufu.br/index.php/biosciencejournal/article/view/46115
Resumo: This study presents a mathematical model to carry out the demand forecasts in relation to patientes classified as green in the emergency department of a municipality in Minas Gerais, Brazil. In addition, another approach will investigate whether the green patients demand remains the same over the weekend, as compared to the weekdays, since there is no support from Primary Health Care units over the weekend. A retrospective study of the emergency service in the municipality of Monte Carmelo was carried out from January 2014 to December 2017.The time series of the patients classified as green during the host by the nurse, according to the Manchester Triage Scale, was analyzed in the temporal domain for the construction of a parametric model with the purpose of realizing the demand forecast. The Manchester Triage Scale has been adopted in most emergency department as a guiding instrument for risk classification, prioritizing the most serious cases. The data processing was fulfilled using Software R Version 3.4. The ARIMA model (1,1,1) presented a better fit for this forecast. The predictions of this model are values close to those observed for the number of patients seen that ranges from 1780.4 to 1796.6 patients per month. In relation to the demand of patients classified as green at the weekend, it has shown that it is slightly lower than the weekend, but it is still an expressive demand. The application of the models must be seen by the managers as a tool to aid decisions, thus it must support processes of planning, management and evaluation of public policies. In this context, mathematical models for demand forecasting are an instrument for management care and services.
id UFU-14_72c9e2203b8583062cc416bf8d4947ab
oai_identifier_str oai:ojs.www.seer.ufu.br:article/46115
network_acronym_str UFU-14
network_name_str Bioscience journal (Online)
repository_id_str
spelling Demand forecast in the emergency department in Minas Gerais, BrazilPrevisão de demanda no departamento de emergência em Minas Gerais, BrasilTriage.Health service needs and demands.Public health.Health SciencesThis study presents a mathematical model to carry out the demand forecasts in relation to patientes classified as green in the emergency department of a municipality in Minas Gerais, Brazil. In addition, another approach will investigate whether the green patients demand remains the same over the weekend, as compared to the weekdays, since there is no support from Primary Health Care units over the weekend. A retrospective study of the emergency service in the municipality of Monte Carmelo was carried out from January 2014 to December 2017.The time series of the patients classified as green during the host by the nurse, according to the Manchester Triage Scale, was analyzed in the temporal domain for the construction of a parametric model with the purpose of realizing the demand forecast. The Manchester Triage Scale has been adopted in most emergency department as a guiding instrument for risk classification, prioritizing the most serious cases. The data processing was fulfilled using Software R Version 3.4. The ARIMA model (1,1,1) presented a better fit for this forecast. The predictions of this model are values close to those observed for the number of patients seen that ranges from 1780.4 to 1796.6 patients per month. In relation to the demand of patients classified as green at the weekend, it has shown that it is slightly lower than the weekend, but it is still an expressive demand. The application of the models must be seen by the managers as a tool to aid decisions, thus it must support processes of planning, management and evaluation of public policies. In this context, mathematical models for demand forecasting are an instrument for management care and services.Este estudo apresenta um modelo matemático para realizar as previsões de demanda em relação aos pacientes classificados como verdes no departamento de emergência de um município de Minas Gerais. Além disso, outra abordagem investigará se a demanda dos pacientes verdes permanece a mesma no final de semana, em relação aos dias da semana, uma vez que não há apoio das unidades de Atenção Primária de Saúde no final de semana. Um estudo retrospectivo do serviço de emergência no município de Monte Carmelo foi realizado no período de janeiro de 2014 a dezembro de 2017. A série temporal dos pacientes classificados como verdes durante o acolhimento pelo enfermeiro, segundo o Sistema de Triagem de Manchester, foi analisada no domínio temporal para a construção de um modelo paramétrico com a finalidade de realizar a previsão de demanda. O Sistema de Triagem de Manchester foi adotado na maioria dos serviços de emergência como instrumento orientador para a classificação de risco, priorizando os casos mais graves. O processamento de dados foi realizado usando o Software R Versão 3.4. O modelo ARIMA (1,1,1) apresentou melhor ajuste para essa previsão. As previsões deste modelo são valores próximos aos observados para o número de pacientes atendidos que variam de 1780.4 a 1796.6 pacientes por mês. Em relação à demanda de pacientes classificados como verdes no final de semana, constatou que é ligeiramente inferior a do fim de semana, mas ainda é uma demanda expressiva. A aplicação dos modelos deve ser vista pelos gestores como uma ferramenta para auxiliar as decisões, portanto, deve apoiar processos de planejamento, gestão e avaliação de políticas públicas. Nesse contexto, os modelos matemáticos para previsão de demanda são um instrumento de atendimento e serviços gerenciais.EDUFU2019-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/4611510.14393/BJ-v35n5a2019-46115Bioscience Journal ; Vol. 35 No. 5 (2019): Sept./Oct.; 1640-1650 Bioscience Journal ; v. 35 n. 5 (2019): Sept./Oct.; 1640-1650 1981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/46115/27090Brazil; ContemporaryCopyright (c) 2019 Franciele Guimarães de Brito, Elmiro Santos Resende, Aurélia Aparecida de Araújo Rodrigues, Marcelle Aparecida Barros Junqueira, Vívian Ribeiro Barreto, João Batista Destro Filhohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessde Brito, Franciele GuimarãesResende, Elmiro SantosRodrigues, Aurélia Aparecida de AraújoJunqueira, Marcelle Aparecida BarrosBarreto, Vívian RibeiroDestro Filho, João Batista2022-01-26T11:38:48Zoai:ojs.www.seer.ufu.br:article/46115Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-01-26T11:38:48Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Demand forecast in the emergency department in Minas Gerais, Brazil
Previsão de demanda no departamento de emergência em Minas Gerais, Brasil
title Demand forecast in the emergency department in Minas Gerais, Brazil
spellingShingle Demand forecast in the emergency department in Minas Gerais, Brazil
de Brito, Franciele Guimarães
Triage.
Health service needs and demands.
Public health.
Health Sciences
title_short Demand forecast in the emergency department in Minas Gerais, Brazil
title_full Demand forecast in the emergency department in Minas Gerais, Brazil
title_fullStr Demand forecast in the emergency department in Minas Gerais, Brazil
title_full_unstemmed Demand forecast in the emergency department in Minas Gerais, Brazil
title_sort Demand forecast in the emergency department in Minas Gerais, Brazil
author de Brito, Franciele Guimarães
author_facet de Brito, Franciele Guimarães
Resende, Elmiro Santos
Rodrigues, Aurélia Aparecida de Araújo
Junqueira, Marcelle Aparecida Barros
Barreto, Vívian Ribeiro
Destro Filho, João Batista
author_role author
author2 Resende, Elmiro Santos
Rodrigues, Aurélia Aparecida de Araújo
Junqueira, Marcelle Aparecida Barros
Barreto, Vívian Ribeiro
Destro Filho, João Batista
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv de Brito, Franciele Guimarães
Resende, Elmiro Santos
Rodrigues, Aurélia Aparecida de Araújo
Junqueira, Marcelle Aparecida Barros
Barreto, Vívian Ribeiro
Destro Filho, João Batista
dc.subject.por.fl_str_mv Triage.
Health service needs and demands.
Public health.
Health Sciences
topic Triage.
Health service needs and demands.
Public health.
Health Sciences
description This study presents a mathematical model to carry out the demand forecasts in relation to patientes classified as green in the emergency department of a municipality in Minas Gerais, Brazil. In addition, another approach will investigate whether the green patients demand remains the same over the weekend, as compared to the weekdays, since there is no support from Primary Health Care units over the weekend. A retrospective study of the emergency service in the municipality of Monte Carmelo was carried out from January 2014 to December 2017.The time series of the patients classified as green during the host by the nurse, according to the Manchester Triage Scale, was analyzed in the temporal domain for the construction of a parametric model with the purpose of realizing the demand forecast. The Manchester Triage Scale has been adopted in most emergency department as a guiding instrument for risk classification, prioritizing the most serious cases. The data processing was fulfilled using Software R Version 3.4. The ARIMA model (1,1,1) presented a better fit for this forecast. The predictions of this model are values close to those observed for the number of patients seen that ranges from 1780.4 to 1796.6 patients per month. In relation to the demand of patients classified as green at the weekend, it has shown that it is slightly lower than the weekend, but it is still an expressive demand. The application of the models must be seen by the managers as a tool to aid decisions, thus it must support processes of planning, management and evaluation of public policies. In this context, mathematical models for demand forecasting are an instrument for management care and services.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-09
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/46115
10.14393/BJ-v35n5a2019-46115
url https://seer.ufu.br/index.php/biosciencejournal/article/view/46115
identifier_str_mv 10.14393/BJ-v35n5a2019-46115
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/46115/27090
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Brazil; Contemporary
dc.publisher.none.fl_str_mv EDUFU
publisher.none.fl_str_mv EDUFU
dc.source.none.fl_str_mv Bioscience Journal ; Vol. 35 No. 5 (2019): Sept./Oct.; 1640-1650
Bioscience Journal ; v. 35 n. 5 (2019): Sept./Oct.; 1640-1650
1981-3163
reponame:Bioscience journal (Online)
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Bioscience journal (Online)
collection Bioscience journal (Online)
repository.name.fl_str_mv Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv biosciencej@ufu.br||
_version_ 1797069081030950912