Combination of noise removal and contrast enhancement methods for the preprocessing of mammogram images - towards the detection of breast cancer
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Bioscience journal (Online) |
Texto Completo: | https://seer.ufu.br/index.php/biosciencejournal/article/view/36020 |
Resumo: | Breast cancer is a major killer disease for women and men. It can be treated and controlled only if it is detected at its earlier stage. Early detection can be achieved by the help of Computer Aided Detection (CAD) methods. From the detailed study on previous researches, it is found that, there is no system producing 100% accuracy because of one or more reasons. Absence of effective preprocessing is the discussed reason that obstructs the detection accuracy of CAD method. Noise removal and contrast enhancement are the two types of preprocessing. There is no system performs both the preprocessing on mammogram image. This work is an attempt to develop an enhanced preprocessing method for CAD of breast cancer by incorporating suitable noise reduction and contrast enhancement methods in the conventional CAD system. Among the available noise reduction techniques, Fast Discrete Curvelet Transform (FDCT) based UnequiSpaced Fast Fourier Transform (USFFT) has been utilized and the Modified Local Range Modification (MLRM) technique has been utilized for contrast enhancement. Contrast enhancement after noise reduction double enhances the mammogram image and the proposed methods MSE value for the mammogram image mdb072 has been 1.44% reduced when comparing to the LRM method. Reduction in MSE increases the PSNR to 0.16%. Many mammogram images have been tested and the result shows that, increase in contrast, decrease in mean square error and increase in peak signal to noise ratio when comparing to existing methods. |
id |
UFU-14_7d2029d2a48430d2c62077f7975e0231 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/36020 |
network_acronym_str |
UFU-14 |
network_name_str |
Bioscience journal (Online) |
repository_id_str |
|
spelling |
Combination of noise removal and contrast enhancement methods for the preprocessing of mammogram images - towards the detection of breast cancer Combinação de métodos de remoção de ruído e aperfeiçoamento de contraste para o pré-processamento de imagens de mamografias - rumo à detecção do câncer de mamaBreast cancerCADPreprocessingUSFFTMLRMMammogramHealth SciencesBreast cancer is a major killer disease for women and men. It can be treated and controlled only if it is detected at its earlier stage. Early detection can be achieved by the help of Computer Aided Detection (CAD) methods. From the detailed study on previous researches, it is found that, there is no system producing 100% accuracy because of one or more reasons. Absence of effective preprocessing is the discussed reason that obstructs the detection accuracy of CAD method. Noise removal and contrast enhancement are the two types of preprocessing. There is no system performs both the preprocessing on mammogram image. This work is an attempt to develop an enhanced preprocessing method for CAD of breast cancer by incorporating suitable noise reduction and contrast enhancement methods in the conventional CAD system. Among the available noise reduction techniques, Fast Discrete Curvelet Transform (FDCT) based UnequiSpaced Fast Fourier Transform (USFFT) has been utilized and the Modified Local Range Modification (MLRM) technique has been utilized for contrast enhancement. Contrast enhancement after noise reduction double enhances the mammogram image and the proposed methods MSE value for the mammogram image mdb072 has been 1.44% reduced when comparing to the LRM method. Reduction in MSE increases the PSNR to 0.16%. Many mammogram images have been tested and the result shows that, increase in contrast, decrease in mean square error and increase in peak signal to noise ratio when comparing to existing methods.Introdução: O câncer de mama é uma grande doença mortal para mulheres e homens. Ele só pode ser tratado e controlado se for detectado em sua fase inicial. A detecção precoce pode ser alcançada com a ajuda de métodos de detecção assistida por computador (CAD). A partir do estudo detalhado sobre pesquisas anteriores, verifica-se que, não há um sistema com 100% de precisão por causa de uma ou mais razões. A ausência de pré-processamento efetivo é o motivo discutido que obstrui a precisão de detecção do método CAD. A remoção de ruído e o aprimoramento do contraste são os dois tipos de pré-processamento. Não existe um sistema que realize ambos os pré-processamentos na imagem da mamografia. Objetivo: Este trabalho é uma tentativa de desenvolver um método de pré-processamento aprimorado para CAD de câncer de mama, incorporando métodos adequados de redução de ruído e aprimoramento de contraste no sistema de CAD convencional. Métodos: Entre as técnicas de redução de ruído disponíveis, a transformada de curva discreta rápida (FDCT) baseada na transformada rápida de Fourier desigualmente espaçada (USFFT) foi utilizada e a técnica de modificação de faixa local modificada (MLRM) foi utilizada para aprimoramento de contraste. Resultados: o aprimoramento do contraste após a redução do ruído melhora o dobro da imagem da mamografia e os métodos propostos para o valor de MSE para a imagem da mamografia mdb072 foram reduzidas em 1,44% quando comparados ao método LRM. A redução de MSE aumenta o PSNR para 0,16%. Conclusão: muitas imagens de mamografia foram testadas e o resultado mostra que, aumento no contraste, diminuição do erro quadrático médio e aumento da relação pico do sinal/ruído quando comparado aos métodos existentes.EDUFU2017-11-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/3602010.14393/BJ-v33n6a2017-36020Bioscience Journal ; Vol. 33 No. 6 (2017): Nov./Dec.; 1653-1658Bioscience Journal ; v. 33 n. 6 (2017): Nov./Dec.; 1653-16581981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/36020/21210Brazil; ContemporaryCopyright (c) 2017 B Senthilkumar, R. Gowrishankar, M. Vaishnavi, S. Gokilahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSenthilkumar, BGowrishankar, R.Vaishnavi, M.Gokila, S.2022-02-12T16:24:53Zoai:ojs.www.seer.ufu.br:article/36020Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-02-12T16:24:53Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Combination of noise removal and contrast enhancement methods for the preprocessing of mammogram images - towards the detection of breast cancer Combinação de métodos de remoção de ruído e aperfeiçoamento de contraste para o pré-processamento de imagens de mamografias - rumo à detecção do câncer de mama |
title |
Combination of noise removal and contrast enhancement methods for the preprocessing of mammogram images - towards the detection of breast cancer |
spellingShingle |
Combination of noise removal and contrast enhancement methods for the preprocessing of mammogram images - towards the detection of breast cancer Senthilkumar, B Breast cancer CAD Preprocessing USFFT MLRM Mammogram Health Sciences |
title_short |
Combination of noise removal and contrast enhancement methods for the preprocessing of mammogram images - towards the detection of breast cancer |
title_full |
Combination of noise removal and contrast enhancement methods for the preprocessing of mammogram images - towards the detection of breast cancer |
title_fullStr |
Combination of noise removal and contrast enhancement methods for the preprocessing of mammogram images - towards the detection of breast cancer |
title_full_unstemmed |
Combination of noise removal and contrast enhancement methods for the preprocessing of mammogram images - towards the detection of breast cancer |
title_sort |
Combination of noise removal and contrast enhancement methods for the preprocessing of mammogram images - towards the detection of breast cancer |
author |
Senthilkumar, B |
author_facet |
Senthilkumar, B Gowrishankar, R. Vaishnavi, M. Gokila, S. |
author_role |
author |
author2 |
Gowrishankar, R. Vaishnavi, M. Gokila, S. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Senthilkumar, B Gowrishankar, R. Vaishnavi, M. Gokila, S. |
dc.subject.por.fl_str_mv |
Breast cancer CAD Preprocessing USFFT MLRM Mammogram Health Sciences |
topic |
Breast cancer CAD Preprocessing USFFT MLRM Mammogram Health Sciences |
description |
Breast cancer is a major killer disease for women and men. It can be treated and controlled only if it is detected at its earlier stage. Early detection can be achieved by the help of Computer Aided Detection (CAD) methods. From the detailed study on previous researches, it is found that, there is no system producing 100% accuracy because of one or more reasons. Absence of effective preprocessing is the discussed reason that obstructs the detection accuracy of CAD method. Noise removal and contrast enhancement are the two types of preprocessing. There is no system performs both the preprocessing on mammogram image. This work is an attempt to develop an enhanced preprocessing method for CAD of breast cancer by incorporating suitable noise reduction and contrast enhancement methods in the conventional CAD system. Among the available noise reduction techniques, Fast Discrete Curvelet Transform (FDCT) based UnequiSpaced Fast Fourier Transform (USFFT) has been utilized and the Modified Local Range Modification (MLRM) technique has been utilized for contrast enhancement. Contrast enhancement after noise reduction double enhances the mammogram image and the proposed methods MSE value for the mammogram image mdb072 has been 1.44% reduced when comparing to the LRM method. Reduction in MSE increases the PSNR to 0.16%. Many mammogram images have been tested and the result shows that, increase in contrast, decrease in mean square error and increase in peak signal to noise ratio when comparing to existing methods. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/36020 10.14393/BJ-v33n6a2017-36020 |
url |
https://seer.ufu.br/index.php/biosciencejournal/article/view/36020 |
identifier_str_mv |
10.14393/BJ-v33n6a2017-36020 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/36020/21210 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 B Senthilkumar, R. Gowrishankar, M. Vaishnavi, S. Gokila https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 B Senthilkumar, R. Gowrishankar, M. Vaishnavi, S. Gokila https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Brazil; Contemporary |
dc.publisher.none.fl_str_mv |
EDUFU |
publisher.none.fl_str_mv |
EDUFU |
dc.source.none.fl_str_mv |
Bioscience Journal ; Vol. 33 No. 6 (2017): Nov./Dec.; 1653-1658 Bioscience Journal ; v. 33 n. 6 (2017): Nov./Dec.; 1653-1658 1981-3163 reponame:Bioscience journal (Online) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Bioscience journal (Online) |
collection |
Bioscience journal (Online) |
repository.name.fl_str_mv |
Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
biosciencej@ufu.br|| |
_version_ |
1797069065952428032 |