Selection of cowpea genotypes for Mato Grosso do Sul viaGGE Biplot and linear regression

Detalhes bibliográficos
Autor(a) principal: Santos, Adriano dos
Data de Publicação: 2017
Outros Autores: Ceccon, Gessi, Rodrigues, Erina Vitório, Teodoro, Paulo Eduardo, Correa, Agenor Martinho, Torres, Francisco Eduardo, Cássia Félix Alvarez, Rita de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Bioscience journal (Online)
Texto Completo: https://seer.ufu.br/index.php/biosciencejournal/article/view/33785
Resumo: The aim of this study was to investigate the association between GGE Biplot and Eberhart and Russell methodologies and to select cowpea genotypes that meet both high grain yield, adaptability and stability for Mato Grosso do Sul environments. The trials were carried out from February to July of 2010, 2011 and 2012 in the municipalities of Dourados, Aquidauana and Chapadão do Sul. The trials in Chapadão do Sul were conducted only in the years 2010 and 2011, totaling eight environments. After detecting significant GE interaction, adaptability and phenotypic stability of cowpea genotypes were analyzed by GGE Biplot and linear regression methods. Eberhart and Russell and GGE biplot methodologies discriminate differently the best cowpea genotypes and it can be used in a complementary way. MNCO1-649F-2-11 and MNCO2-675-4-9 genotypes are the closest to the ideal in terms of high grain yield and phenotypic stability, being so suitable for cultivation in the state of Mato Grosso do Sul.
id UFU-14_fa4e714987cf0b8f775b3cdc6980004a
oai_identifier_str oai:ojs.www.seer.ufu.br:article/33785
network_acronym_str UFU-14
network_name_str Bioscience journal (Online)
repository_id_str
spelling Selection of cowpea genotypes for Mato Grosso do Sul viaGGE Biplot and linear regression Seleção de genótipos de feijão-caupi para Mato Grosso do Sul via GGE Biplot e regressão linearmultivariate analysisgenotype x environment interactionVigna unguiculataAgricultural SciencesThe aim of this study was to investigate the association between GGE Biplot and Eberhart and Russell methodologies and to select cowpea genotypes that meet both high grain yield, adaptability and stability for Mato Grosso do Sul environments. The trials were carried out from February to July of 2010, 2011 and 2012 in the municipalities of Dourados, Aquidauana and Chapadão do Sul. The trials in Chapadão do Sul were conducted only in the years 2010 and 2011, totaling eight environments. After detecting significant GE interaction, adaptability and phenotypic stability of cowpea genotypes were analyzed by GGE Biplot and linear regression methods. Eberhart and Russell and GGE biplot methodologies discriminate differently the best cowpea genotypes and it can be used in a complementary way. MNCO1-649F-2-11 and MNCO2-675-4-9 genotypes are the closest to the ideal in terms of high grain yield and phenotypic stability, being so suitable for cultivation in the state of Mato Grosso do Sul.O objetivo deste trabalho foi verificar a associação entre as metodologias de Eberhart & Russel e GGE Biplot e selecionar genótipos de feijão-caupi que reúnam simultaneamente alta produtividade de grãos,adaptabilidade e estabilidade aos ambientes de Mato Grosso do Sul. Os experimentos foram realizados no período de fevereiro a julho de 2010, 2011 e 2012, nos municípios de Dourados, Aquidauana e Chapadão do Sul. Os experimentos em Chapadão do Sul foram realizados apenas nos anos de 2010 e 2011, totalizando oito ambientes. Após detectar interação da GE significativa, a adaptabilidade e estabilidade fenotípica dos genótipos de feijão-caupi foi analisada pelos métodos GGE Biplot e regressão linear. As metodologias de Eberhart & Russell e GGE biplot discriminam de forma distinta os melhores genótipos de feijão-caupi e podem ser usadas de forma complementar. Os genótipos MNCO1-649F-2-11 e MNCO2-675-4-9 são indicados para o cultivo no Estado de Mato Grosso do Sul, pois aliam alta produtividade de grãos e estabilidade fenotípica.EDUFU2017-05-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/3378510.14393/BJ-v33n3-33785Bioscience Journal ; Vol. 33 No. 3 (2017): May/June; 631-638Bioscience Journal ; v. 33 n. 3 (2017): May./June; 631-6381981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/33785/20323Brazil; ContemporaryCopyright (c) 2017 Adriano dos Santos, Gessi Ceccon, Erina Vitório Rodrigues, Paulo Eduardo Teodoro, Agenor Martinho Correa, Francisco Eduardo Torres, Rita de Cássia Félix Alvarezhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSantos, Adriano dosCeccon, GessiRodrigues, Erina VitórioTeodoro, Paulo EduardoCorrea, Agenor MartinhoTorres, Francisco EduardoCássia Félix Alvarez, Rita de2022-02-15T20:53:56Zoai:ojs.www.seer.ufu.br:article/33785Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-02-15T20:53:56Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Selection of cowpea genotypes for Mato Grosso do Sul viaGGE Biplot and linear regression
Seleção de genótipos de feijão-caupi para Mato Grosso do Sul via GGE Biplot e regressão linear
title Selection of cowpea genotypes for Mato Grosso do Sul viaGGE Biplot and linear regression
spellingShingle Selection of cowpea genotypes for Mato Grosso do Sul viaGGE Biplot and linear regression
Santos, Adriano dos
multivariate analysis
genotype x environment interaction
Vigna unguiculata
Agricultural Sciences
title_short Selection of cowpea genotypes for Mato Grosso do Sul viaGGE Biplot and linear regression
title_full Selection of cowpea genotypes for Mato Grosso do Sul viaGGE Biplot and linear regression
title_fullStr Selection of cowpea genotypes for Mato Grosso do Sul viaGGE Biplot and linear regression
title_full_unstemmed Selection of cowpea genotypes for Mato Grosso do Sul viaGGE Biplot and linear regression
title_sort Selection of cowpea genotypes for Mato Grosso do Sul viaGGE Biplot and linear regression
author Santos, Adriano dos
author_facet Santos, Adriano dos
Ceccon, Gessi
Rodrigues, Erina Vitório
Teodoro, Paulo Eduardo
Correa, Agenor Martinho
Torres, Francisco Eduardo
Cássia Félix Alvarez, Rita de
author_role author
author2 Ceccon, Gessi
Rodrigues, Erina Vitório
Teodoro, Paulo Eduardo
Correa, Agenor Martinho
Torres, Francisco Eduardo
Cássia Félix Alvarez, Rita de
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Santos, Adriano dos
Ceccon, Gessi
Rodrigues, Erina Vitório
Teodoro, Paulo Eduardo
Correa, Agenor Martinho
Torres, Francisco Eduardo
Cássia Félix Alvarez, Rita de
dc.subject.por.fl_str_mv multivariate analysis
genotype x environment interaction
Vigna unguiculata
Agricultural Sciences
topic multivariate analysis
genotype x environment interaction
Vigna unguiculata
Agricultural Sciences
description The aim of this study was to investigate the association between GGE Biplot and Eberhart and Russell methodologies and to select cowpea genotypes that meet both high grain yield, adaptability and stability for Mato Grosso do Sul environments. The trials were carried out from February to July of 2010, 2011 and 2012 in the municipalities of Dourados, Aquidauana and Chapadão do Sul. The trials in Chapadão do Sul were conducted only in the years 2010 and 2011, totaling eight environments. After detecting significant GE interaction, adaptability and phenotypic stability of cowpea genotypes were analyzed by GGE Biplot and linear regression methods. Eberhart and Russell and GGE biplot methodologies discriminate differently the best cowpea genotypes and it can be used in a complementary way. MNCO1-649F-2-11 and MNCO2-675-4-9 genotypes are the closest to the ideal in terms of high grain yield and phenotypic stability, being so suitable for cultivation in the state of Mato Grosso do Sul.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-24
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/33785
10.14393/BJ-v33n3-33785
url https://seer.ufu.br/index.php/biosciencejournal/article/view/33785
identifier_str_mv 10.14393/BJ-v33n3-33785
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/33785/20323
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Brazil; Contemporary
dc.publisher.none.fl_str_mv EDUFU
publisher.none.fl_str_mv EDUFU
dc.source.none.fl_str_mv Bioscience Journal ; Vol. 33 No. 3 (2017): May/June; 631-638
Bioscience Journal ; v. 33 n. 3 (2017): May./June; 631-638
1981-3163
reponame:Bioscience journal (Online)
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Bioscience journal (Online)
collection Bioscience journal (Online)
repository.name.fl_str_mv Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv biosciencej@ufu.br||
_version_ 1797069076933115904