Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil

Detalhes bibliográficos
Autor(a) principal: Oliveira-Júnior, José Francisco de
Data de Publicação: 2018
Outros Autores: de Gois, Givanildo, da Silva, Elania Barros, Silva Junior, Carlos Antonio, Teodoro, Paulo Eduardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Bioscience journal (Online)
Texto Completo: https://seer.ufu.br/index.php/biosciencejournal/article/view/39702
Resumo: Dengue is one of the biggest problems of global public health in developing and underdeveloped countries. Nowadays, researchers in climate changes are concerned about the impact of these changes on human health, particularly with increased this epidemic. Dengue is among the largest public health problems in Brazil and is higher in the months with high temperatures, which is the Aedes aegypti's reproductive period climax. Reported dengue cases via DATASUS from 1994 to 2014 were analyzed. Mann-Kendall (MK), Run and Pettit nonparametric tests; were applied to time series. The run test indicated that the time series is homogenous and persistence free. There is a non-significant trend of increase of a number of reported dengue cases only in Rio de Janeiro. Based on the test, three positive trends were identified in the time series of São Paulo, Minas Gerais and the Espírito Santo States of dengue cases reported in Southeast of Brazil. Pettitt test was able to identify the years classified as El Niño events and that had a significant impact on the increase of dengue cases in the southeastern region of Brazil.
id UFU-14_fc2c920acfc5935dadb2a5093a65889d
oai_identifier_str oai:ojs.www.seer.ufu.br:article/39702
network_acronym_str UFU-14
network_name_str Bioscience journal (Online)
repository_id_str
spelling Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil Testes não-paramétricos aplicados a casos de dengues reportados na região sudeste do BrasilInfectious diseaseClimatic elementsStatistical methodsMeteorological systemsClimate changeBiological SciencesDengue is one of the biggest problems of global public health in developing and underdeveloped countries. Nowadays, researchers in climate changes are concerned about the impact of these changes on human health, particularly with increased this epidemic. Dengue is among the largest public health problems in Brazil and is higher in the months with high temperatures, which is the Aedes aegypti's reproductive period climax. Reported dengue cases via DATASUS from 1994 to 2014 were analyzed. Mann-Kendall (MK), Run and Pettit nonparametric tests; were applied to time series. The run test indicated that the time series is homogenous and persistence free. There is a non-significant trend of increase of a number of reported dengue cases only in Rio de Janeiro. Based on the test, three positive trends were identified in the time series of São Paulo, Minas Gerais and the Espírito Santo States of dengue cases reported in Southeast of Brazil. Pettitt test was able to identify the years classified as El Niño events and that had a significant impact on the increase of dengue cases in the southeastern region of Brazil.A dengue é um dos maiores problemas de saúde pública global em países em desenvolvimento e subdesenvolvidos. Hoje em dia, os pesquisadores em mudanças climáticas estão preocupados com o impacto dessas mudanças na saúde humana, particularmente com o aumento dessa epidemia. A dengue está entre os maiores problemas de saúde pública no Brasil e é maior nos meses com altas temperaturas, que é o clímax do período reprodutivo do Aedes Aegypti. Foram analisados relatórios de casos de dengue via DATASUS de 1994 a 2014. Testes não paramétricos de Mann-Kendall (MK), Run e Pettit; foram aplicadas em séries temporais. O teste Run indicou que a série temporal é homogênea e sem persistência. Existe uma tendência não significativa de aumento do número de casos de dengue relatados apenas no Rio de Janeiro. Com base no teste, três tendências positivas foram identificadas na série temporal de casos de dengue de São Paulo, Minas Gerais e Espírito Santo relatados no Sudeste do Brasil. O teste de Pettitt foi capaz de identificar os anos classificados como eventos de El Niño e que tiveram um impacto significativo no aumento de casos de dengue na região sudeste do Brasil.EDUFU2018-08-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/3970210.14393/BJ-v34n1a2018-39702Bioscience Journal ; Vol. 34 No. 4 (2018): July/Aug.; 1010-1016Bioscience Journal ; v. 34 n. 4 (2018): July/Aug.; 1010-10161981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/39702/22660Brazil; ContemporaryCopyright (c) 2018 José Francisco de Oliveira-Júnior, Givanildo de Gois, Elania Barros da Silva, Carlos Antonio Silva Junior, Paulo Eduardo Teodorohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessOliveira-Júnior, José Francisco dede Gois, Givanildoda Silva, Elania BarrosSilva Junior, Carlos AntonioTeodoro, Paulo Eduardo2022-02-14T12:27:26Zoai:ojs.www.seer.ufu.br:article/39702Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-02-14T12:27:26Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil
Testes não-paramétricos aplicados a casos de dengues reportados na região sudeste do Brasil
title Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil
spellingShingle Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil
Oliveira-Júnior, José Francisco de
Infectious disease
Climatic elements
Statistical methods
Meteorological systems
Climate change
Biological Sciences
title_short Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil
title_full Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil
title_fullStr Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil
title_full_unstemmed Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil
title_sort Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil
author Oliveira-Júnior, José Francisco de
author_facet Oliveira-Júnior, José Francisco de
de Gois, Givanildo
da Silva, Elania Barros
Silva Junior, Carlos Antonio
Teodoro, Paulo Eduardo
author_role author
author2 de Gois, Givanildo
da Silva, Elania Barros
Silva Junior, Carlos Antonio
Teodoro, Paulo Eduardo
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Oliveira-Júnior, José Francisco de
de Gois, Givanildo
da Silva, Elania Barros
Silva Junior, Carlos Antonio
Teodoro, Paulo Eduardo
dc.subject.por.fl_str_mv Infectious disease
Climatic elements
Statistical methods
Meteorological systems
Climate change
Biological Sciences
topic Infectious disease
Climatic elements
Statistical methods
Meteorological systems
Climate change
Biological Sciences
description Dengue is one of the biggest problems of global public health in developing and underdeveloped countries. Nowadays, researchers in climate changes are concerned about the impact of these changes on human health, particularly with increased this epidemic. Dengue is among the largest public health problems in Brazil and is higher in the months with high temperatures, which is the Aedes aegypti's reproductive period climax. Reported dengue cases via DATASUS from 1994 to 2014 were analyzed. Mann-Kendall (MK), Run and Pettit nonparametric tests; were applied to time series. The run test indicated that the time series is homogenous and persistence free. There is a non-significant trend of increase of a number of reported dengue cases only in Rio de Janeiro. Based on the test, three positive trends were identified in the time series of São Paulo, Minas Gerais and the Espírito Santo States of dengue cases reported in Southeast of Brazil. Pettitt test was able to identify the years classified as El Niño events and that had a significant impact on the increase of dengue cases in the southeastern region of Brazil.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-08
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/39702
10.14393/BJ-v34n1a2018-39702
url https://seer.ufu.br/index.php/biosciencejournal/article/view/39702
identifier_str_mv 10.14393/BJ-v34n1a2018-39702
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://seer.ufu.br/index.php/biosciencejournal/article/view/39702/22660
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Brazil; Contemporary
dc.publisher.none.fl_str_mv EDUFU
publisher.none.fl_str_mv EDUFU
dc.source.none.fl_str_mv Bioscience Journal ; Vol. 34 No. 4 (2018): July/Aug.; 1010-1016
Bioscience Journal ; v. 34 n. 4 (2018): July/Aug.; 1010-1016
1981-3163
reponame:Bioscience journal (Online)
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Bioscience journal (Online)
collection Bioscience journal (Online)
repository.name.fl_str_mv Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv biosciencej@ufu.br||
_version_ 1797069078616080384