Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Bioscience journal (Online) |
Texto Completo: | https://seer.ufu.br/index.php/biosciencejournal/article/view/39702 |
Resumo: | Dengue is one of the biggest problems of global public health in developing and underdeveloped countries. Nowadays, researchers in climate changes are concerned about the impact of these changes on human health, particularly with increased this epidemic. Dengue is among the largest public health problems in Brazil and is higher in the months with high temperatures, which is the Aedes aegypti's reproductive period climax. Reported dengue cases via DATASUS from 1994 to 2014 were analyzed. Mann-Kendall (MK), Run and Pettit nonparametric tests; were applied to time series. The run test indicated that the time series is homogenous and persistence free. There is a non-significant trend of increase of a number of reported dengue cases only in Rio de Janeiro. Based on the test, three positive trends were identified in the time series of São Paulo, Minas Gerais and the Espírito Santo States of dengue cases reported in Southeast of Brazil. Pettitt test was able to identify the years classified as El Niño events and that had a significant impact on the increase of dengue cases in the southeastern region of Brazil. |
id |
UFU-14_fc2c920acfc5935dadb2a5093a65889d |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/39702 |
network_acronym_str |
UFU-14 |
network_name_str |
Bioscience journal (Online) |
repository_id_str |
|
spelling |
Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil Testes não-paramétricos aplicados a casos de dengues reportados na região sudeste do BrasilInfectious diseaseClimatic elementsStatistical methodsMeteorological systemsClimate changeBiological SciencesDengue is one of the biggest problems of global public health in developing and underdeveloped countries. Nowadays, researchers in climate changes are concerned about the impact of these changes on human health, particularly with increased this epidemic. Dengue is among the largest public health problems in Brazil and is higher in the months with high temperatures, which is the Aedes aegypti's reproductive period climax. Reported dengue cases via DATASUS from 1994 to 2014 were analyzed. Mann-Kendall (MK), Run and Pettit nonparametric tests; were applied to time series. The run test indicated that the time series is homogenous and persistence free. There is a non-significant trend of increase of a number of reported dengue cases only in Rio de Janeiro. Based on the test, three positive trends were identified in the time series of São Paulo, Minas Gerais and the Espírito Santo States of dengue cases reported in Southeast of Brazil. Pettitt test was able to identify the years classified as El Niño events and that had a significant impact on the increase of dengue cases in the southeastern region of Brazil.A dengue é um dos maiores problemas de saúde pública global em países em desenvolvimento e subdesenvolvidos. Hoje em dia, os pesquisadores em mudanças climáticas estão preocupados com o impacto dessas mudanças na saúde humana, particularmente com o aumento dessa epidemia. A dengue está entre os maiores problemas de saúde pública no Brasil e é maior nos meses com altas temperaturas, que é o clímax do período reprodutivo do Aedes Aegypti. Foram analisados relatórios de casos de dengue via DATASUS de 1994 a 2014. Testes não paramétricos de Mann-Kendall (MK), Run e Pettit; foram aplicadas em séries temporais. O teste Run indicou que a série temporal é homogênea e sem persistência. Existe uma tendência não significativa de aumento do número de casos de dengue relatados apenas no Rio de Janeiro. Com base no teste, três tendências positivas foram identificadas na série temporal de casos de dengue de São Paulo, Minas Gerais e Espírito Santo relatados no Sudeste do Brasil. O teste de Pettitt foi capaz de identificar os anos classificados como eventos de El Niño e que tiveram um impacto significativo no aumento de casos de dengue na região sudeste do Brasil.EDUFU2018-08-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/biosciencejournal/article/view/3970210.14393/BJ-v34n1a2018-39702Bioscience Journal ; Vol. 34 No. 4 (2018): July/Aug.; 1010-1016Bioscience Journal ; v. 34 n. 4 (2018): July/Aug.; 1010-10161981-3163reponame:Bioscience journal (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUenghttps://seer.ufu.br/index.php/biosciencejournal/article/view/39702/22660Brazil; ContemporaryCopyright (c) 2018 José Francisco de Oliveira-Júnior, Givanildo de Gois, Elania Barros da Silva, Carlos Antonio Silva Junior, Paulo Eduardo Teodorohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessOliveira-Júnior, José Francisco dede Gois, Givanildoda Silva, Elania BarrosSilva Junior, Carlos AntonioTeodoro, Paulo Eduardo2022-02-14T12:27:26Zoai:ojs.www.seer.ufu.br:article/39702Revistahttps://seer.ufu.br/index.php/biosciencejournalPUBhttps://seer.ufu.br/index.php/biosciencejournal/oaibiosciencej@ufu.br||1981-31631516-3725opendoar:2022-02-14T12:27:26Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil Testes não-paramétricos aplicados a casos de dengues reportados na região sudeste do Brasil |
title |
Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil |
spellingShingle |
Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil Oliveira-Júnior, José Francisco de Infectious disease Climatic elements Statistical methods Meteorological systems Climate change Biological Sciences |
title_short |
Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil |
title_full |
Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil |
title_fullStr |
Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil |
title_full_unstemmed |
Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil |
title_sort |
Non-parametric tests applied to reported cases of dengue in the southeast region of Brazil |
author |
Oliveira-Júnior, José Francisco de |
author_facet |
Oliveira-Júnior, José Francisco de de Gois, Givanildo da Silva, Elania Barros Silva Junior, Carlos Antonio Teodoro, Paulo Eduardo |
author_role |
author |
author2 |
de Gois, Givanildo da Silva, Elania Barros Silva Junior, Carlos Antonio Teodoro, Paulo Eduardo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Oliveira-Júnior, José Francisco de de Gois, Givanildo da Silva, Elania Barros Silva Junior, Carlos Antonio Teodoro, Paulo Eduardo |
dc.subject.por.fl_str_mv |
Infectious disease Climatic elements Statistical methods Meteorological systems Climate change Biological Sciences |
topic |
Infectious disease Climatic elements Statistical methods Meteorological systems Climate change Biological Sciences |
description |
Dengue is one of the biggest problems of global public health in developing and underdeveloped countries. Nowadays, researchers in climate changes are concerned about the impact of these changes on human health, particularly with increased this epidemic. Dengue is among the largest public health problems in Brazil and is higher in the months with high temperatures, which is the Aedes aegypti's reproductive period climax. Reported dengue cases via DATASUS from 1994 to 2014 were analyzed. Mann-Kendall (MK), Run and Pettit nonparametric tests; were applied to time series. The run test indicated that the time series is homogenous and persistence free. There is a non-significant trend of increase of a number of reported dengue cases only in Rio de Janeiro. Based on the test, three positive trends were identified in the time series of São Paulo, Minas Gerais and the Espírito Santo States of dengue cases reported in Southeast of Brazil. Pettitt test was able to identify the years classified as El Niño events and that had a significant impact on the increase of dengue cases in the southeastern region of Brazil. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-08 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/39702 10.14393/BJ-v34n1a2018-39702 |
url |
https://seer.ufu.br/index.php/biosciencejournal/article/view/39702 |
identifier_str_mv |
10.14393/BJ-v34n1a2018-39702 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/biosciencejournal/article/view/39702/22660 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Brazil; Contemporary |
dc.publisher.none.fl_str_mv |
EDUFU |
publisher.none.fl_str_mv |
EDUFU |
dc.source.none.fl_str_mv |
Bioscience Journal ; Vol. 34 No. 4 (2018): July/Aug.; 1010-1016 Bioscience Journal ; v. 34 n. 4 (2018): July/Aug.; 1010-1016 1981-3163 reponame:Bioscience journal (Online) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Bioscience journal (Online) |
collection |
Bioscience journal (Online) |
repository.name.fl_str_mv |
Bioscience journal (Online) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
biosciencej@ufu.br|| |
_version_ |
1797069078616080384 |