APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)

Detalhes bibliográficos
Autor(a) principal: Sales, Denise Marques
Data de Publicação: 2023
Outros Autores: Fonseca, Bráulio Magalhães, Assis, Wellington Lopes
Tipo de documento: Artigo
Idioma: por
Título da fonte: Caminhos de Geografia
Texto Completo: https://seer.ufu.br/index.php/caminhosdegeografia/article/view/63405
Resumo: This study aimed to assess the associations between the occurrence of respiratory diseases among children aged 0 to 05 years old, health vulnerability, and climatic elements in Belo Horizonte (MG), using spatial models involving  Hierarchical Weight Analysis and  Monte Carlo method. While demonstrating the phenomena spatiality, the aim was to contribute to a greater understanding of socio-spatial and environmental aspects. The model adopted enabled the assessment of spatial uncertainty and sensitivity in the analysis of damage risks to the respiratory system, making it a valuable tool that allows for spatialization, better visualization, and analysis of the determinant factors of health conditions. It was possible to identify areas with greater or lesser risk of occurrence of respiratory diseases and their association with seasonal behaviors. The areas at greatest risk coincide, in January and April, with regions with increased thermal amplitude, higher concentrations of carbon monoxide, reduced air humidity and with sectors that present high and very high categories of the Health Vulnerability Index. t  It was observed that some types of socio-spatial organizations (low-income areas, close to industrial complexes and with high vulnerability) also cause harm to the health of the population.
id UFU-16_60ffcb2aacefbc3662b7b18ac8976187
oai_identifier_str oai:ojs.www.seer.ufu.br:article/63405
network_acronym_str UFU-16
network_name_str Caminhos de Geografia
repository_id_str
spelling APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)APLICAÇÃO DO MÉTODO DE MONTE CARLO PARA A AVALIAÇÃO DE INCERTEZA E SENSIBILIDADE ESPACIAL NAS ANÁLISES DE RISCO DE OCORRÊNCIA DE DOENÇAS RESPIRATÓRIAS EM BELO HORIZONTE (MG)Análise multicritérioAnálise de incerteza e sensibilidadeElementos climáticosAspectos socioeconômicosDoenças respiratóriasMulticriteria analysisUncertainty and sensitivity analysisClimatic elementsSocioeconomic aspectsRespiratory diseasesThis study aimed to assess the associations between the occurrence of respiratory diseases among children aged 0 to 05 years old, health vulnerability, and climatic elements in Belo Horizonte (MG), using spatial models involving  Hierarchical Weight Analysis and  Monte Carlo method. While demonstrating the phenomena spatiality, the aim was to contribute to a greater understanding of socio-spatial and environmental aspects. The model adopted enabled the assessment of spatial uncertainty and sensitivity in the analysis of damage risks to the respiratory system, making it a valuable tool that allows for spatialization, better visualization, and analysis of the determinant factors of health conditions. It was possible to identify areas with greater or lesser risk of occurrence of respiratory diseases and their association with seasonal behaviors. The areas at greatest risk coincide, in January and April, with regions with increased thermal amplitude, higher concentrations of carbon monoxide, reduced air humidity and with sectors that present high and very high categories of the Health Vulnerability Index. t  It was observed that some types of socio-spatial organizations (low-income areas, close to industrial complexes and with high vulnerability) also cause harm to the health of the population.Este trabalho teve como objetivo avaliar as associações entre a ocorrência de doenças respiratórias em crianças de 0 a 5 anos de idade, a vulnerabilidade em saúde e elementos climáticos em Belo Horizonte (MG), utilizando modelos espaciais, que envolvem a Análise Hierárquica de Pesos e o método de Monte Carlo. Ao demonstrar a espacialidade dos fenômenos, visou-se contribuir para um maior entendimento dos aspectos socioespaciais e ambientais. A modelagem adotada permitiu avaliar incerteza e sensibilidade espacial nas análises de riscos de agravos ao sistema respiratório, tornando-se valiosa ferramenta que permite a espacialização, melhor visualização e análise dos fatores determinantes de agravos à saúde. Foi possível identificar áreas com maior ou menor risco de ocorrência de doenças respiratórias e sua associação com comportamentos sazonais. As áreas de maior risco coincidem, em janeiro e abril, com regiões com aumento da amplitude térmica, maiores concentrações de monóxido de carbono, redução da umidade do ar e espacialmente com os setores que apresentam as categorias elevado e muito elevado do Índice de Vulnerabilidade à Saúde. Observamos que alguns tipos de organizações socioespaciais (zonas de baixa renda, próximas de complexos industriais e com alta vulnerabilidade) também causam agravos à saúde da população.EDUFU - Editora da Universidade Federal de Uberlândia2023-04-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdfhttps://seer.ufu.br/index.php/caminhosdegeografia/article/view/6340510.14393/RCG249263405Caminhos de Geografia; Vol. 24 No. 92 (2023): Abril; 191-210Caminhos de Geografia; Vol. 24 Núm. 92 (2023): Abril; 191-210Caminhos de Geografia; v. 24 n. 92 (2023): Abril; 191-2101678-6343reponame:Caminhos de Geografiainstname:Universidade Federal de Uberlândia (UFU)instacron:UFUporhttps://seer.ufu.br/index.php/caminhosdegeografia/article/view/63405/35934Copyright (c) 2023 Denise Marques Sales, Bráulio Magalhães Fonseca, Wellington Lopes Assishttp://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessSales, Denise MarquesFonseca, Bráulio MagalhãesAssis, Wellington Lopes2023-04-10T14:36:51Zoai:ojs.www.seer.ufu.br:article/63405Revistahttps://seer.ufu.br/index.php/caminhosdegeografia/indexPUBhttp://www.seer.ufu.br/index.php/caminhosdegeografia/oaiflaviasantosgeo@gmail.com1678-63431678-6343opendoar:2023-04-10T14:36:51Caminhos de Geografia - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)
APLICAÇÃO DO MÉTODO DE MONTE CARLO PARA A AVALIAÇÃO DE INCERTEZA E SENSIBILIDADE ESPACIAL NAS ANÁLISES DE RISCO DE OCORRÊNCIA DE DOENÇAS RESPIRATÓRIAS EM BELO HORIZONTE (MG)
title APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)
spellingShingle APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)
Sales, Denise Marques
Análise multicritério
Análise de incerteza e sensibilidade
Elementos climáticos
Aspectos socioeconômicos
Doenças respiratórias
Multicriteria analysis
Uncertainty and sensitivity analysis
Climatic elements
Socioeconomic aspects
Respiratory diseases
title_short APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)
title_full APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)
title_fullStr APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)
title_full_unstemmed APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)
title_sort APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)
author Sales, Denise Marques
author_facet Sales, Denise Marques
Fonseca, Bráulio Magalhães
Assis, Wellington Lopes
author_role author
author2 Fonseca, Bráulio Magalhães
Assis, Wellington Lopes
author2_role author
author
dc.contributor.author.fl_str_mv Sales, Denise Marques
Fonseca, Bráulio Magalhães
Assis, Wellington Lopes
dc.subject.por.fl_str_mv Análise multicritério
Análise de incerteza e sensibilidade
Elementos climáticos
Aspectos socioeconômicos
Doenças respiratórias
Multicriteria analysis
Uncertainty and sensitivity analysis
Climatic elements
Socioeconomic aspects
Respiratory diseases
topic Análise multicritério
Análise de incerteza e sensibilidade
Elementos climáticos
Aspectos socioeconômicos
Doenças respiratórias
Multicriteria analysis
Uncertainty and sensitivity analysis
Climatic elements
Socioeconomic aspects
Respiratory diseases
description This study aimed to assess the associations between the occurrence of respiratory diseases among children aged 0 to 05 years old, health vulnerability, and climatic elements in Belo Horizonte (MG), using spatial models involving  Hierarchical Weight Analysis and  Monte Carlo method. While demonstrating the phenomena spatiality, the aim was to contribute to a greater understanding of socio-spatial and environmental aspects. The model adopted enabled the assessment of spatial uncertainty and sensitivity in the analysis of damage risks to the respiratory system, making it a valuable tool that allows for spatialization, better visualization, and analysis of the determinant factors of health conditions. It was possible to identify areas with greater or lesser risk of occurrence of respiratory diseases and their association with seasonal behaviors. The areas at greatest risk coincide, in January and April, with regions with increased thermal amplitude, higher concentrations of carbon monoxide, reduced air humidity and with sectors that present high and very high categories of the Health Vulnerability Index. t  It was observed that some types of socio-spatial organizations (low-income areas, close to industrial complexes and with high vulnerability) also cause harm to the health of the population.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-04
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado pelos pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufu.br/index.php/caminhosdegeografia/article/view/63405
10.14393/RCG249263405
url https://seer.ufu.br/index.php/caminhosdegeografia/article/view/63405
identifier_str_mv 10.14393/RCG249263405
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.ufu.br/index.php/caminhosdegeografia/article/view/63405/35934
dc.rights.driver.fl_str_mv Copyright (c) 2023 Denise Marques Sales, Bráulio Magalhães Fonseca, Wellington Lopes Assis
http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Denise Marques Sales, Bráulio Magalhães Fonseca, Wellington Lopes Assis
http://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv EDUFU - Editora da Universidade Federal de Uberlândia
publisher.none.fl_str_mv EDUFU - Editora da Universidade Federal de Uberlândia
dc.source.none.fl_str_mv Caminhos de Geografia; Vol. 24 No. 92 (2023): Abril; 191-210
Caminhos de Geografia; Vol. 24 Núm. 92 (2023): Abril; 191-210
Caminhos de Geografia; v. 24 n. 92 (2023): Abril; 191-210
1678-6343
reponame:Caminhos de Geografia
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Caminhos de Geografia
collection Caminhos de Geografia
repository.name.fl_str_mv Caminhos de Geografia - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv flaviasantosgeo@gmail.com
_version_ 1797067010447769600