APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Caminhos de Geografia |
Texto Completo: | https://seer.ufu.br/index.php/caminhosdegeografia/article/view/63405 |
Resumo: | This study aimed to assess the associations between the occurrence of respiratory diseases among children aged 0 to 05 years old, health vulnerability, and climatic elements in Belo Horizonte (MG), using spatial models involving Hierarchical Weight Analysis and Monte Carlo method. While demonstrating the phenomena spatiality, the aim was to contribute to a greater understanding of socio-spatial and environmental aspects. The model adopted enabled the assessment of spatial uncertainty and sensitivity in the analysis of damage risks to the respiratory system, making it a valuable tool that allows for spatialization, better visualization, and analysis of the determinant factors of health conditions. It was possible to identify areas with greater or lesser risk of occurrence of respiratory diseases and their association with seasonal behaviors. The areas at greatest risk coincide, in January and April, with regions with increased thermal amplitude, higher concentrations of carbon monoxide, reduced air humidity and with sectors that present high and very high categories of the Health Vulnerability Index. t It was observed that some types of socio-spatial organizations (low-income areas, close to industrial complexes and with high vulnerability) also cause harm to the health of the population. |
id |
UFU-16_60ffcb2aacefbc3662b7b18ac8976187 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/63405 |
network_acronym_str |
UFU-16 |
network_name_str |
Caminhos de Geografia |
repository_id_str |
|
spelling |
APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG)APLICAÇÃO DO MÉTODO DE MONTE CARLO PARA A AVALIAÇÃO DE INCERTEZA E SENSIBILIDADE ESPACIAL NAS ANÁLISES DE RISCO DE OCORRÊNCIA DE DOENÇAS RESPIRATÓRIAS EM BELO HORIZONTE (MG)Análise multicritérioAnálise de incerteza e sensibilidadeElementos climáticosAspectos socioeconômicosDoenças respiratóriasMulticriteria analysisUncertainty and sensitivity analysisClimatic elementsSocioeconomic aspectsRespiratory diseasesThis study aimed to assess the associations between the occurrence of respiratory diseases among children aged 0 to 05 years old, health vulnerability, and climatic elements in Belo Horizonte (MG), using spatial models involving Hierarchical Weight Analysis and Monte Carlo method. While demonstrating the phenomena spatiality, the aim was to contribute to a greater understanding of socio-spatial and environmental aspects. The model adopted enabled the assessment of spatial uncertainty and sensitivity in the analysis of damage risks to the respiratory system, making it a valuable tool that allows for spatialization, better visualization, and analysis of the determinant factors of health conditions. It was possible to identify areas with greater or lesser risk of occurrence of respiratory diseases and their association with seasonal behaviors. The areas at greatest risk coincide, in January and April, with regions with increased thermal amplitude, higher concentrations of carbon monoxide, reduced air humidity and with sectors that present high and very high categories of the Health Vulnerability Index. t It was observed that some types of socio-spatial organizations (low-income areas, close to industrial complexes and with high vulnerability) also cause harm to the health of the population.Este trabalho teve como objetivo avaliar as associações entre a ocorrência de doenças respiratórias em crianças de 0 a 5 anos de idade, a vulnerabilidade em saúde e elementos climáticos em Belo Horizonte (MG), utilizando modelos espaciais, que envolvem a Análise Hierárquica de Pesos e o método de Monte Carlo. Ao demonstrar a espacialidade dos fenômenos, visou-se contribuir para um maior entendimento dos aspectos socioespaciais e ambientais. A modelagem adotada permitiu avaliar incerteza e sensibilidade espacial nas análises de riscos de agravos ao sistema respiratório, tornando-se valiosa ferramenta que permite a espacialização, melhor visualização e análise dos fatores determinantes de agravos à saúde. Foi possível identificar áreas com maior ou menor risco de ocorrência de doenças respiratórias e sua associação com comportamentos sazonais. As áreas de maior risco coincidem, em janeiro e abril, com regiões com aumento da amplitude térmica, maiores concentrações de monóxido de carbono, redução da umidade do ar e espacialmente com os setores que apresentam as categorias elevado e muito elevado do Índice de Vulnerabilidade à Saúde. Observamos que alguns tipos de organizações socioespaciais (zonas de baixa renda, próximas de complexos industriais e com alta vulnerabilidade) também causam agravos à saúde da população.EDUFU - Editora da Universidade Federal de Uberlândia2023-04-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdfhttps://seer.ufu.br/index.php/caminhosdegeografia/article/view/6340510.14393/RCG249263405Caminhos de Geografia; Vol. 24 No. 92 (2023): Abril; 191-210Caminhos de Geografia; Vol. 24 Núm. 92 (2023): Abril; 191-210Caminhos de Geografia; v. 24 n. 92 (2023): Abril; 191-2101678-6343reponame:Caminhos de Geografiainstname:Universidade Federal de Uberlândia (UFU)instacron:UFUporhttps://seer.ufu.br/index.php/caminhosdegeografia/article/view/63405/35934Copyright (c) 2023 Denise Marques Sales, Bráulio Magalhães Fonseca, Wellington Lopes Assishttp://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessSales, Denise MarquesFonseca, Bráulio MagalhãesAssis, Wellington Lopes2023-04-10T14:36:51Zoai:ojs.www.seer.ufu.br:article/63405Revistahttps://seer.ufu.br/index.php/caminhosdegeografia/indexPUBhttp://www.seer.ufu.br/index.php/caminhosdegeografia/oaiflaviasantosgeo@gmail.com1678-63431678-6343opendoar:2023-04-10T14:36:51Caminhos de Geografia - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG) APLICAÇÃO DO MÉTODO DE MONTE CARLO PARA A AVALIAÇÃO DE INCERTEZA E SENSIBILIDADE ESPACIAL NAS ANÁLISES DE RISCO DE OCORRÊNCIA DE DOENÇAS RESPIRATÓRIAS EM BELO HORIZONTE (MG) |
title |
APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG) |
spellingShingle |
APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG) Sales, Denise Marques Análise multicritério Análise de incerteza e sensibilidade Elementos climáticos Aspectos socioeconômicos Doenças respiratórias Multicriteria analysis Uncertainty and sensitivity analysis Climatic elements Socioeconomic aspects Respiratory diseases |
title_short |
APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG) |
title_full |
APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG) |
title_fullStr |
APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG) |
title_full_unstemmed |
APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG) |
title_sort |
APPLICATION OF MONTE CARLO METHOD TO ASSESS SPATIAL UNCERTAINTY AND SENSITIVITY IN RISK ANALYSES OF OCCURRENCE OF RESPIRATORY DISEASES IN BELO HORIZONTE (MG) |
author |
Sales, Denise Marques |
author_facet |
Sales, Denise Marques Fonseca, Bráulio Magalhães Assis, Wellington Lopes |
author_role |
author |
author2 |
Fonseca, Bráulio Magalhães Assis, Wellington Lopes |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Sales, Denise Marques Fonseca, Bráulio Magalhães Assis, Wellington Lopes |
dc.subject.por.fl_str_mv |
Análise multicritério Análise de incerteza e sensibilidade Elementos climáticos Aspectos socioeconômicos Doenças respiratórias Multicriteria analysis Uncertainty and sensitivity analysis Climatic elements Socioeconomic aspects Respiratory diseases |
topic |
Análise multicritério Análise de incerteza e sensibilidade Elementos climáticos Aspectos socioeconômicos Doenças respiratórias Multicriteria analysis Uncertainty and sensitivity analysis Climatic elements Socioeconomic aspects Respiratory diseases |
description |
This study aimed to assess the associations between the occurrence of respiratory diseases among children aged 0 to 05 years old, health vulnerability, and climatic elements in Belo Horizonte (MG), using spatial models involving Hierarchical Weight Analysis and Monte Carlo method. While demonstrating the phenomena spatiality, the aim was to contribute to a greater understanding of socio-spatial and environmental aspects. The model adopted enabled the assessment of spatial uncertainty and sensitivity in the analysis of damage risks to the respiratory system, making it a valuable tool that allows for spatialization, better visualization, and analysis of the determinant factors of health conditions. It was possible to identify areas with greater or lesser risk of occurrence of respiratory diseases and their association with seasonal behaviors. The areas at greatest risk coincide, in January and April, with regions with increased thermal amplitude, higher concentrations of carbon monoxide, reduced air humidity and with sectors that present high and very high categories of the Health Vulnerability Index. t It was observed that some types of socio-spatial organizations (low-income areas, close to industrial complexes and with high vulnerability) also cause harm to the health of the population. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-04 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/caminhosdegeografia/article/view/63405 10.14393/RCG249263405 |
url |
https://seer.ufu.br/index.php/caminhosdegeografia/article/view/63405 |
identifier_str_mv |
10.14393/RCG249263405 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/caminhosdegeografia/article/view/63405/35934 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Denise Marques Sales, Bráulio Magalhães Fonseca, Wellington Lopes Assis http://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Denise Marques Sales, Bráulio Magalhães Fonseca, Wellington Lopes Assis http://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EDUFU - Editora da Universidade Federal de Uberlândia |
publisher.none.fl_str_mv |
EDUFU - Editora da Universidade Federal de Uberlândia |
dc.source.none.fl_str_mv |
Caminhos de Geografia; Vol. 24 No. 92 (2023): Abril; 191-210 Caminhos de Geografia; Vol. 24 Núm. 92 (2023): Abril; 191-210 Caminhos de Geografia; v. 24 n. 92 (2023): Abril; 191-210 1678-6343 reponame:Caminhos de Geografia instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Caminhos de Geografia |
collection |
Caminhos de Geografia |
repository.name.fl_str_mv |
Caminhos de Geografia - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
flaviasantosgeo@gmail.com |
_version_ |
1797067010447769600 |