EVALUATION OF SUSCEPTIBILITY TO SHALLOW LANDSLIDES IN MAQUINÉ/RS AND THE FIELD DATA INFLUENCE ON THE QUALITY OF HAZARD MAPPING
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Caminhos de Geografia |
Texto Completo: | https://seer.ufu.br/index.php/caminhosdegeografia/article/view/64452 |
Resumo: | Identifying susceptible regions to landslides and mapping hazardous areas are essential tools in managing the risk and disasters associated with these natural phenomena. One of the most used tools for mapping these areas is numerical modeling. Thus, the objective of the present study was to characterize the geotechnical units (UGs) in the Maquiné/RS river basin, perform hazard mapping and evaluate the influence of geotechnical data collected in the field on the quality of the mapping. The SHALSTAB model was used, considering the characterization of the basin's UGs with data obtained through in situ and laboratory soil analyses. Thus, three scenarios were simulated: scenario-1: default (with the values recommended by the original SHALSTAB); scenario-2: average (with a single value for each parameter, this being the average of the values obtained in the field); and scenario-3: discretized (with spatialized values for each UG). Through the efficiency indexes used (Hit Index and Error Index), the results obtained showed that scenario-3 presented the best performance, demonstrating the importance of spatialization with the GUs and the use of local data for a greater quality of the mappings performed with SHALSTAB. |
id |
UFU-16_7656d30bfcf5e4adfd805319e61eae15 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/64452 |
network_acronym_str |
UFU-16 |
network_name_str |
Caminhos de Geografia |
repository_id_str |
|
spelling |
EVALUATION OF SUSCEPTIBILITY TO SHALLOW LANDSLIDES IN MAQUINÉ/RS AND THE FIELD DATA INFLUENCE ON THE QUALITY OF HAZARD MAPPINGAVALIAÇÃO DA SUSCEPTIBILIDADE A ESCORREGAMENTOS TRANSLACIONAIS EM MAQUINÉ/RS E INFLUÊNCIA DOS DADOS DE CAMPO NA QUALIDADE DO MAPEAMENTO DE PERIGOSHALSTABUnidades GeotécnicasMovimentos de massaGeomorfologiaSHALSTABGeotechnical UnitsMass movementsGeomorphologyIdentifying susceptible regions to landslides and mapping hazardous areas are essential tools in managing the risk and disasters associated with these natural phenomena. One of the most used tools for mapping these areas is numerical modeling. Thus, the objective of the present study was to characterize the geotechnical units (UGs) in the Maquiné/RS river basin, perform hazard mapping and evaluate the influence of geotechnical data collected in the field on the quality of the mapping. The SHALSTAB model was used, considering the characterization of the basin's UGs with data obtained through in situ and laboratory soil analyses. Thus, three scenarios were simulated: scenario-1: default (with the values recommended by the original SHALSTAB); scenario-2: average (with a single value for each parameter, this being the average of the values obtained in the field); and scenario-3: discretized (with spatialized values for each UG). Through the efficiency indexes used (Hit Index and Error Index), the results obtained showed that scenario-3 presented the best performance, demonstrating the importance of spatialization with the GUs and the use of local data for a greater quality of the mappings performed with SHALSTAB.Identificar regiões suscetíveis a escorregamentos e realizar mapeamentos das áreas de perigo são ferramentas essenciais na gestão de risco e desastres associados a esses fenômenos naturais. Uma das ferramentas mais utilizadas para a elaboração de mapeamentos dessas áreas é a modelagem numérica. Dessa forma, o objetivo do presente estudo foi caracterizar as unidades geotécnicas (UGs) na bacia hidrografia do rio Maquiné/RS, realizar o mapeamento de perigo e avaliar a influência dos dados geotécnicos coletados em campo na qualidade do mapeamento. Foi utilizado o modelo SHALSTAB, com a consideração da caracterização das UGs da bacia com dados obtidos através de análises de solo in situ e em laboratório. Assim, foram simulados três cenários: cenário-1: default (com os valores recomendados pelo SHALSTAB original); cenário-2: médio (com um valor único para cada parâmetro, sendo esse a média dos valores obtidos em campo); e cenário-3: discretizado (com os valores espacializados para cada UG). Através dos índices de eficiência utilizados (Índice de Acerto e Índice de Erro), os resultados obtidos demonstraram que o cenário-3 apresentou o melhor desempenho, demonstrando a importância da espacialização com as UGs e da utilização de dados locais para uma maior qualidade dos mapeamentos realizados com o SHALSTAB.EDUFU - Editora da Universidade Federal de Uberlândia2023-06-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdfhttps://seer.ufu.br/index.php/caminhosdegeografia/article/view/6445210.14393/RCG249364452Caminhos de Geografia; Vol. 24 No. 93 (2023): Junho; 367-384Caminhos de Geografia; Vol. 24 Núm. 93 (2023): Junho; 367-384Caminhos de Geografia; v. 24 n. 93 (2023): Junho; 367-3841678-6343reponame:Caminhos de Geografiainstname:Universidade Federal de Uberlândia (UFU)instacron:UFUporhttps://seer.ufu.br/index.php/caminhosdegeografia/article/view/64452/36134Copyright (c) 2023 Alessandro Gustavo Franck, Danrlei de Menezes, Masato Kobiyamahttp://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessFranck, Alessandro GustavoMenezes, Danrlei deKobiyama, Masato2023-06-12T17:08:57Zoai:ojs.www.seer.ufu.br:article/64452Revistahttps://seer.ufu.br/index.php/caminhosdegeografia/indexPUBhttp://www.seer.ufu.br/index.php/caminhosdegeografia/oaiflaviasantosgeo@gmail.com1678-63431678-6343opendoar:2023-06-12T17:08:57Caminhos de Geografia - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
EVALUATION OF SUSCEPTIBILITY TO SHALLOW LANDSLIDES IN MAQUINÉ/RS AND THE FIELD DATA INFLUENCE ON THE QUALITY OF HAZARD MAPPING AVALIAÇÃO DA SUSCEPTIBILIDADE A ESCORREGAMENTOS TRANSLACIONAIS EM MAQUINÉ/RS E INFLUÊNCIA DOS DADOS DE CAMPO NA QUALIDADE DO MAPEAMENTO DE PERIGO |
title |
EVALUATION OF SUSCEPTIBILITY TO SHALLOW LANDSLIDES IN MAQUINÉ/RS AND THE FIELD DATA INFLUENCE ON THE QUALITY OF HAZARD MAPPING |
spellingShingle |
EVALUATION OF SUSCEPTIBILITY TO SHALLOW LANDSLIDES IN MAQUINÉ/RS AND THE FIELD DATA INFLUENCE ON THE QUALITY OF HAZARD MAPPING Franck, Alessandro Gustavo SHALSTAB Unidades Geotécnicas Movimentos de massa Geomorfologia SHALSTAB Geotechnical Units Mass movements Geomorphology |
title_short |
EVALUATION OF SUSCEPTIBILITY TO SHALLOW LANDSLIDES IN MAQUINÉ/RS AND THE FIELD DATA INFLUENCE ON THE QUALITY OF HAZARD MAPPING |
title_full |
EVALUATION OF SUSCEPTIBILITY TO SHALLOW LANDSLIDES IN MAQUINÉ/RS AND THE FIELD DATA INFLUENCE ON THE QUALITY OF HAZARD MAPPING |
title_fullStr |
EVALUATION OF SUSCEPTIBILITY TO SHALLOW LANDSLIDES IN MAQUINÉ/RS AND THE FIELD DATA INFLUENCE ON THE QUALITY OF HAZARD MAPPING |
title_full_unstemmed |
EVALUATION OF SUSCEPTIBILITY TO SHALLOW LANDSLIDES IN MAQUINÉ/RS AND THE FIELD DATA INFLUENCE ON THE QUALITY OF HAZARD MAPPING |
title_sort |
EVALUATION OF SUSCEPTIBILITY TO SHALLOW LANDSLIDES IN MAQUINÉ/RS AND THE FIELD DATA INFLUENCE ON THE QUALITY OF HAZARD MAPPING |
author |
Franck, Alessandro Gustavo |
author_facet |
Franck, Alessandro Gustavo Menezes, Danrlei de Kobiyama, Masato |
author_role |
author |
author2 |
Menezes, Danrlei de Kobiyama, Masato |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Franck, Alessandro Gustavo Menezes, Danrlei de Kobiyama, Masato |
dc.subject.por.fl_str_mv |
SHALSTAB Unidades Geotécnicas Movimentos de massa Geomorfologia SHALSTAB Geotechnical Units Mass movements Geomorphology |
topic |
SHALSTAB Unidades Geotécnicas Movimentos de massa Geomorfologia SHALSTAB Geotechnical Units Mass movements Geomorphology |
description |
Identifying susceptible regions to landslides and mapping hazardous areas are essential tools in managing the risk and disasters associated with these natural phenomena. One of the most used tools for mapping these areas is numerical modeling. Thus, the objective of the present study was to characterize the geotechnical units (UGs) in the Maquiné/RS river basin, perform hazard mapping and evaluate the influence of geotechnical data collected in the field on the quality of the mapping. The SHALSTAB model was used, considering the characterization of the basin's UGs with data obtained through in situ and laboratory soil analyses. Thus, three scenarios were simulated: scenario-1: default (with the values recommended by the original SHALSTAB); scenario-2: average (with a single value for each parameter, this being the average of the values obtained in the field); and scenario-3: discretized (with spatialized values for each UG). Through the efficiency indexes used (Hit Index and Error Index), the results obtained showed that scenario-3 presented the best performance, demonstrating the importance of spatialization with the GUs and the use of local data for a greater quality of the mappings performed with SHALSTAB. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-12 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/caminhosdegeografia/article/view/64452 10.14393/RCG249364452 |
url |
https://seer.ufu.br/index.php/caminhosdegeografia/article/view/64452 |
identifier_str_mv |
10.14393/RCG249364452 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/caminhosdegeografia/article/view/64452/36134 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Alessandro Gustavo Franck, Danrlei de Menezes, Masato Kobiyama http://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Alessandro Gustavo Franck, Danrlei de Menezes, Masato Kobiyama http://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EDUFU - Editora da Universidade Federal de Uberlândia |
publisher.none.fl_str_mv |
EDUFU - Editora da Universidade Federal de Uberlândia |
dc.source.none.fl_str_mv |
Caminhos de Geografia; Vol. 24 No. 93 (2023): Junho; 367-384 Caminhos de Geografia; Vol. 24 Núm. 93 (2023): Junho; 367-384 Caminhos de Geografia; v. 24 n. 93 (2023): Junho; 367-384 1678-6343 reponame:Caminhos de Geografia instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Caminhos de Geografia |
collection |
Caminhos de Geografia |
repository.name.fl_str_mv |
Caminhos de Geografia - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
flaviasantosgeo@gmail.com |
_version_ |
1797067010489712640 |