Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Sociedade & natureza (Online) |
Texto Completo: | https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409 |
Resumo: | Artisanal and small-scale gold mining can occur on land or in riverbeds. However, the activity needs to be supported by a Mining Permit, issued by the Agência Nacional de Mineração, and the appropriate environmental license from the competent environmental agency. The use of images from Sentinel-2 satellites presents itself as a potential tool for identifying gold mining vessels due to the temporal resolution, free imagery, global coverage, and more refined spatial resolution. So, this study aimed to identify gold mining vessels on the Madeira River near Porto Velho city, Rondônia state, located at Brazilian Amazon, in 13 Sentinel-2 images from 2018 to 2021 using the classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Random Forest (RF) and Spectral Angle Mapper (SAM). The results showed that machine learning classifiers obtained the best performance, especially the object-oriented SVM classifier, which had the best average F1 score (0.91). In addition, the detection percentage of gold mining vessels originated by this classifier was satisfactory, with only 0 to 4 active gold mining vessels with sediment plumes being omitted per image. Therefore, based on the results obtained, it was concluded that the use of machine learning classifiers proved to be effective in identifying gold mining vessels. |
id |
UFU-6_6c8595b6ff9a8185918ace39724be4f5 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/69409 |
network_acronym_str |
UFU-6 |
network_name_str |
Sociedade & natureza (Online) |
repository_id_str |
|
spelling |
Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 ImagesIdentificação de Garimpos de Ouro Embarcados por meio de Algoritmos de Classificação em Imagens Sentinel-2Garimpos de Ouro Embarcados ClassificadoresMachine learningGold mining vesselsClassifiersMachine learningArtisanal and small-scale gold mining can occur on land or in riverbeds. However, the activity needs to be supported by a Mining Permit, issued by the Agência Nacional de Mineração, and the appropriate environmental license from the competent environmental agency. The use of images from Sentinel-2 satellites presents itself as a potential tool for identifying gold mining vessels due to the temporal resolution, free imagery, global coverage, and more refined spatial resolution. So, this study aimed to identify gold mining vessels on the Madeira River near Porto Velho city, Rondônia state, located at Brazilian Amazon, in 13 Sentinel-2 images from 2018 to 2021 using the classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Random Forest (RF) and Spectral Angle Mapper (SAM). The results showed that machine learning classifiers obtained the best performance, especially the object-oriented SVM classifier, which had the best average F1 score (0.91). In addition, the detection percentage of gold mining vessels originated by this classifier was satisfactory, with only 0 to 4 active gold mining vessels with sediment plumes being omitted per image. Therefore, based on the results obtained, it was concluded that the use of machine learning classifiers proved to be effective in identifying gold mining vessels.Garimpos de ouro podem ocorrer em terra firme ou em leitos de rios na forma de embarcações. Porém, a atividade precisa estar amparada com uma Permissão de Lavra Garimpeira (PLG), expedida pela Agência Nacional de Mineração, e com a devida licença ambiental do órgão ambiental competente. Nesse sentido, o uso de imagens dos satélites Sentinel-2 se apresenta como ferramenta potencial para identificação de garimpos de ouro embarcados devido à resolução temporal, gratuidade de imagens, cobertura global e resolução espacial mais refinada. Este estudo objetivou identificar garimpos de ouro embarcados no Rio Madeira, próximo à cidade Porto Velho, estado de Rondônia, em 13 imagens Sentinel-2 de 2018 a 2021, a partir dos seguintes classificadores: Support Vector Machine (SVM); K-Nearest Neighbor (KNN); Random Forest (RF); e Spectral Angle Mapper (SAM). Os resultados demonstraram que os classificadores do tipo machine learning obtiveram melhor performance, com destaque para o classificador SVM orientado a objeto que apresentou melhor score F1 médio (0,91). Além disso, o percentual de detecção obtido foi satisfatório com omissão variando de 0 a 4 garimpos ativos por imagem. Assim, a partir dos resultados obtidos, conclui-se que o uso de classificadores machine learning se mostrou eficaz para identificar garimpos de ouro embarcados.Universidade Federal de Uberlândia2023-11-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://seer.ufu.br/index.php/sociedadenatureza/article/view/6940910.14393/SN-v36-2024-69409Sociedade & Natureza; Vol. 36 No. 1 (2024): Sociedade & NaturezaSociedade & Natureza; v. 36 n. 1 (2024): Sociedade & Natureza1982-45130103-1570reponame:Sociedade & natureza (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUporenghttps://seer.ufu.br/index.php/sociedadenatureza/article/view/69409/37202https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409/37203Copyright (c) 2023 Diego Henrique Costa Pereira, Roberto Arnaldo Trancoso Gomes, Osmar Abílio de Carvalho Júnior, Renato Fontes Guimarãeshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessPereira, Diego Henrique CostaGomes, Roberto Arnaldo TrancosoCarvalho Júnior, Osmar Abílio deGuimarães, Renato Fontes2024-05-13T15:01:07Zoai:ojs.www.seer.ufu.br:article/69409Revistahttp://www.sociedadenatureza.ig.ufu.br/PUBhttps://seer.ufu.br/index.php/sociedadenatureza/oai||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br1982-45130103-1570opendoar:2024-05-13T15:01:07Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images Identificação de Garimpos de Ouro Embarcados por meio de Algoritmos de Classificação em Imagens Sentinel-2 |
title |
Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images |
spellingShingle |
Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images Pereira, Diego Henrique Costa Garimpos de Ouro Embarcados Classificadores Machine learning Gold mining vessels Classifiers Machine learning |
title_short |
Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images |
title_full |
Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images |
title_fullStr |
Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images |
title_full_unstemmed |
Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images |
title_sort |
Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images |
author |
Pereira, Diego Henrique Costa |
author_facet |
Pereira, Diego Henrique Costa Gomes, Roberto Arnaldo Trancoso Carvalho Júnior, Osmar Abílio de Guimarães, Renato Fontes |
author_role |
author |
author2 |
Gomes, Roberto Arnaldo Trancoso Carvalho Júnior, Osmar Abílio de Guimarães, Renato Fontes |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Pereira, Diego Henrique Costa Gomes, Roberto Arnaldo Trancoso Carvalho Júnior, Osmar Abílio de Guimarães, Renato Fontes |
dc.subject.por.fl_str_mv |
Garimpos de Ouro Embarcados Classificadores Machine learning Gold mining vessels Classifiers Machine learning |
topic |
Garimpos de Ouro Embarcados Classificadores Machine learning Gold mining vessels Classifiers Machine learning |
description |
Artisanal and small-scale gold mining can occur on land or in riverbeds. However, the activity needs to be supported by a Mining Permit, issued by the Agência Nacional de Mineração, and the appropriate environmental license from the competent environmental agency. The use of images from Sentinel-2 satellites presents itself as a potential tool for identifying gold mining vessels due to the temporal resolution, free imagery, global coverage, and more refined spatial resolution. So, this study aimed to identify gold mining vessels on the Madeira River near Porto Velho city, Rondônia state, located at Brazilian Amazon, in 13 Sentinel-2 images from 2018 to 2021 using the classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Random Forest (RF) and Spectral Angle Mapper (SAM). The results showed that machine learning classifiers obtained the best performance, especially the object-oriented SVM classifier, which had the best average F1 score (0.91). In addition, the detection percentage of gold mining vessels originated by this classifier was satisfactory, with only 0 to 4 active gold mining vessels with sediment plumes being omitted per image. Therefore, based on the results obtained, it was concluded that the use of machine learning classifiers proved to be effective in identifying gold mining vessels. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-27 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409 10.14393/SN-v36-2024-69409 |
url |
https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409 |
identifier_str_mv |
10.14393/SN-v36-2024-69409 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409/37202 https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409/37203 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia |
dc.source.none.fl_str_mv |
Sociedade & Natureza; Vol. 36 No. 1 (2024): Sociedade & Natureza Sociedade & Natureza; v. 36 n. 1 (2024): Sociedade & Natureza 1982-4513 0103-1570 reponame:Sociedade & natureza (Online) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Sociedade & natureza (Online) |
collection |
Sociedade & natureza (Online) |
repository.name.fl_str_mv |
Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br |
_version_ |
1799943977454010368 |