Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images

Detalhes bibliográficos
Autor(a) principal: Pereira, Diego Henrique Costa
Data de Publicação: 2023
Outros Autores: Gomes, Roberto Arnaldo Trancoso, Carvalho Júnior, Osmar Abílio de, Guimarães, Renato Fontes
Tipo de documento: Artigo
Idioma: por
eng
Título da fonte: Sociedade & natureza (Online)
Texto Completo: https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409
Resumo: Artisanal and small-scale gold mining can occur on land or in riverbeds. However, the activity needs to be supported by a Mining Permit, issued by the Agência Nacional de Mineração, and the appropriate environmental license from the competent environmental agency. The use of images from Sentinel-2 satellites presents itself as a potential tool for identifying gold mining vessels due to the temporal resolution, free imagery, global coverage, and more refined spatial resolution. So, this study aimed to identify gold mining vessels on the Madeira River near Porto Velho city, Rondônia state, located at Brazilian Amazon, in 13 Sentinel-2 images from 2018 to 2021 using the classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Random Forest (RF) and Spectral Angle Mapper (SAM). The results showed that machine learning classifiers obtained the best performance, especially the object-oriented SVM classifier, which had the best average F1 score (0.91).  In addition, the detection percentage of gold mining vessels originated by this classifier was satisfactory, with only 0 to 4 active gold mining vessels with sediment plumes being omitted per image. Therefore, based on the results obtained, it was concluded that the use of machine learning classifiers proved to be effective in identifying gold mining vessels.
id UFU-6_6c8595b6ff9a8185918ace39724be4f5
oai_identifier_str oai:ojs.www.seer.ufu.br:article/69409
network_acronym_str UFU-6
network_name_str Sociedade & natureza (Online)
repository_id_str
spelling Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 ImagesIdentificação de Garimpos de Ouro Embarcados por meio de Algoritmos de Classificação em Imagens Sentinel-2Garimpos de Ouro Embarcados ClassificadoresMachine learningGold mining vesselsClassifiersMachine learningArtisanal and small-scale gold mining can occur on land or in riverbeds. However, the activity needs to be supported by a Mining Permit, issued by the Agência Nacional de Mineração, and the appropriate environmental license from the competent environmental agency. The use of images from Sentinel-2 satellites presents itself as a potential tool for identifying gold mining vessels due to the temporal resolution, free imagery, global coverage, and more refined spatial resolution. So, this study aimed to identify gold mining vessels on the Madeira River near Porto Velho city, Rondônia state, located at Brazilian Amazon, in 13 Sentinel-2 images from 2018 to 2021 using the classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Random Forest (RF) and Spectral Angle Mapper (SAM). The results showed that machine learning classifiers obtained the best performance, especially the object-oriented SVM classifier, which had the best average F1 score (0.91).  In addition, the detection percentage of gold mining vessels originated by this classifier was satisfactory, with only 0 to 4 active gold mining vessels with sediment plumes being omitted per image. Therefore, based on the results obtained, it was concluded that the use of machine learning classifiers proved to be effective in identifying gold mining vessels.Garimpos de ouro podem ocorrer em terra firme ou em leitos de rios na forma de embarcações. Porém, a atividade precisa estar amparada com uma Permissão de Lavra Garimpeira (PLG), expedida pela Agência Nacional de Mineração, e com a devida licença ambiental do órgão ambiental competente. Nesse sentido, o uso de imagens dos satélites Sentinel-2 se apresenta como ferramenta potencial para identificação de garimpos de ouro embarcados devido à resolução temporal, gratuidade de imagens, cobertura global e resolução espacial mais refinada. Este estudo objetivou identificar garimpos de ouro embarcados no Rio Madeira, próximo à cidade Porto Velho, estado de Rondônia, em 13 imagens Sentinel-2 de 2018 a 2021, a partir dos seguintes classificadores: Support Vector Machine (SVM); K-Nearest Neighbor (KNN); Random Forest (RF); e Spectral Angle Mapper (SAM). Os resultados demonstraram que os classificadores do tipo machine learning obtiveram melhor performance, com destaque para o classificador SVM orientado a objeto que apresentou melhor score F1 médio (0,91). Além disso, o percentual de detecção obtido foi satisfatório com omissão variando de 0 a 4 garimpos ativos por imagem. Assim, a partir dos resultados obtidos, conclui-se que o uso de classificadores machine learning se mostrou eficaz para identificar garimpos de ouro embarcados.Universidade Federal de Uberlândia2023-11-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://seer.ufu.br/index.php/sociedadenatureza/article/view/6940910.14393/SN-v36-2024-69409Sociedade & Natureza; Vol. 36 No. 1 (2024): Sociedade & NaturezaSociedade & Natureza; v. 36 n. 1 (2024): Sociedade & Natureza1982-45130103-1570reponame:Sociedade & natureza (Online)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUporenghttps://seer.ufu.br/index.php/sociedadenatureza/article/view/69409/37202https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409/37203Copyright (c) 2023 Diego Henrique Costa Pereira, Roberto Arnaldo Trancoso Gomes, Osmar Abílio de Carvalho Júnior, Renato Fontes Guimarãeshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessPereira, Diego Henrique CostaGomes, Roberto Arnaldo TrancosoCarvalho Júnior, Osmar Abílio deGuimarães, Renato Fontes2024-05-13T15:01:07Zoai:ojs.www.seer.ufu.br:article/69409Revistahttp://www.sociedadenatureza.ig.ufu.br/PUBhttps://seer.ufu.br/index.php/sociedadenatureza/oai||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br1982-45130103-1570opendoar:2024-05-13T15:01:07Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images
Identificação de Garimpos de Ouro Embarcados por meio de Algoritmos de Classificação em Imagens Sentinel-2
title Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images
spellingShingle Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images
Pereira, Diego Henrique Costa
Garimpos de Ouro Embarcados
Classificadores
Machine learning
Gold mining vessels
Classifiers
Machine learning
title_short Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images
title_full Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images
title_fullStr Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images
title_full_unstemmed Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images
title_sort Identification of Gold Mining Vessels based on Classification Algorithms using Sentinel-2 Images
author Pereira, Diego Henrique Costa
author_facet Pereira, Diego Henrique Costa
Gomes, Roberto Arnaldo Trancoso
Carvalho Júnior, Osmar Abílio de
Guimarães, Renato Fontes
author_role author
author2 Gomes, Roberto Arnaldo Trancoso
Carvalho Júnior, Osmar Abílio de
Guimarães, Renato Fontes
author2_role author
author
author
dc.contributor.author.fl_str_mv Pereira, Diego Henrique Costa
Gomes, Roberto Arnaldo Trancoso
Carvalho Júnior, Osmar Abílio de
Guimarães, Renato Fontes
dc.subject.por.fl_str_mv Garimpos de Ouro Embarcados
Classificadores
Machine learning
Gold mining vessels
Classifiers
Machine learning
topic Garimpos de Ouro Embarcados
Classificadores
Machine learning
Gold mining vessels
Classifiers
Machine learning
description Artisanal and small-scale gold mining can occur on land or in riverbeds. However, the activity needs to be supported by a Mining Permit, issued by the Agência Nacional de Mineração, and the appropriate environmental license from the competent environmental agency. The use of images from Sentinel-2 satellites presents itself as a potential tool for identifying gold mining vessels due to the temporal resolution, free imagery, global coverage, and more refined spatial resolution. So, this study aimed to identify gold mining vessels on the Madeira River near Porto Velho city, Rondônia state, located at Brazilian Amazon, in 13 Sentinel-2 images from 2018 to 2021 using the classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Random Forest (RF) and Spectral Angle Mapper (SAM). The results showed that machine learning classifiers obtained the best performance, especially the object-oriented SVM classifier, which had the best average F1 score (0.91).  In addition, the detection percentage of gold mining vessels originated by this classifier was satisfactory, with only 0 to 4 active gold mining vessels with sediment plumes being omitted per image. Therefore, based on the results obtained, it was concluded that the use of machine learning classifiers proved to be effective in identifying gold mining vessels.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-27
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409
10.14393/SN-v36-2024-69409
url https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409
identifier_str_mv 10.14393/SN-v36-2024-69409
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.relation.none.fl_str_mv https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409/37202
https://seer.ufu.br/index.php/sociedadenatureza/article/view/69409/37203
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.source.none.fl_str_mv Sociedade & Natureza; Vol. 36 No. 1 (2024): Sociedade & Natureza
Sociedade & Natureza; v. 36 n. 1 (2024): Sociedade & Natureza
1982-4513
0103-1570
reponame:Sociedade & natureza (Online)
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Sociedade & natureza (Online)
collection Sociedade & natureza (Online)
repository.name.fl_str_mv Sociedade & natureza (Online) - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv ||sociedade.natureza.ufu@gmail.com|| lucianamelo@ufu.br
_version_ 1799943977454010368