CLINICAL-EPIDEMIOLOGICAL PROFILE AND SPATIAL AUTOCORRELATION OF COVID-19 CASES IN THE STATE OF MARANHÃO
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Hygeia (Uberlândia) |
Texto Completo: | https://seer.ufu.br/index.php/hygeia/article/view/68639 |
Resumo: | Objective: To describe the clinical-epidemiological characteristics and the spatial autocorrelation of COVID-19 in the state of Maranhão. Method: This is a descriptive and ecological study using the municipalities of the state as ecological units of analysis. All new cases of COVID-19, registered between March 2020 and January 2022 in the COVID-19 Notification System in Maranhão were considered for the study. The clinical-epidemiological variables were analyzed using descriptive statistics. Age-standardized incidence rates were determined by State municipalities and spatial autocorrelation was verified using global and local Moran indices. Results: A total of 386,567 cases were registered; the majority were female, mixed race/color, aged between 30 and 39 years, with laboratory diagnosis criteria, performed in a public laboratory, without comorbidity and that did not evolve to death. A positive spatial autocorrelation of the incidence rates in the first and second wave of the disease was observed, with statistically significant high-risk clusters being identified, mainly in the central-southern region of the State. Conclusion: Such findings can help health management, systems and services in the implementation of measures aimed at mitigating and controlling the disease, subsidizing the reduction of health disparities and social inequalities in the State of Maranhão. |
id |
UFU-7_c734e6a770816a645b4bd5e254e53277 |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/68639 |
network_acronym_str |
UFU-7 |
network_name_str |
Hygeia (Uberlândia) |
repository_id_str |
|
spelling |
CLINICAL-EPIDEMIOLOGICAL PROFILE AND SPATIAL AUTOCORRELATION OF COVID-19 CASES IN THE STATE OF MARANHÃOCARACTERIZAÇÃO CLÍNICO-EPIDEMIOLÓGICA E AUTOCORRELAÇÃO ESPACIAL DOS CASOS DE COVID-19 NO ESTADO DO MARANHÃOCOVID-19IncidênciaEpidemiologiaAnálise EspacialSistemas de Informação GeográficaCOVID-19IncidenceEpidemiologySpatial AnalysisGeographic Information SystemsObjective: To describe the clinical-epidemiological characteristics and the spatial autocorrelation of COVID-19 in the state of Maranhão. Method: This is a descriptive and ecological study using the municipalities of the state as ecological units of analysis. All new cases of COVID-19, registered between March 2020 and January 2022 in the COVID-19 Notification System in Maranhão were considered for the study. The clinical-epidemiological variables were analyzed using descriptive statistics. Age-standardized incidence rates were determined by State municipalities and spatial autocorrelation was verified using global and local Moran indices. Results: A total of 386,567 cases were registered; the majority were female, mixed race/color, aged between 30 and 39 years, with laboratory diagnosis criteria, performed in a public laboratory, without comorbidity and that did not evolve to death. A positive spatial autocorrelation of the incidence rates in the first and second wave of the disease was observed, with statistically significant high-risk clusters being identified, mainly in the central-southern region of the State. Conclusion: Such findings can help health management, systems and services in the implementation of measures aimed at mitigating and controlling the disease, subsidizing the reduction of health disparities and social inequalities in the State of Maranhão.Objetivo: Descrever as características clínico-epidemiológicas e a autocorrelação espacial da COVID-19 no estado do Maranhão. Método: Trata-se de um estudo descritivo e ecológico, tendo como unidades ecológicas de análise os municípios do estado. Foram considerados todos os casos novos de COVID-19, registrados entre março de 2020 e janeiro de 2022, junto ao Sistema de Notificação da COVID-19 do Maranhão. As variáveis clínico-epidemiológicas foram analisadas por meio da estatística descritiva. Determinaram-se as taxas de incidência padronizadas pela idade por municípios do estado e a autocorrelação espacial foi verificada por meio dos índices de Moran global e local. Resultados: Foram registrados 386.567 casos, dos quais a maioria era do sexo feminino, raça/cor parda, idade de 30 a 39 anos, com critério de diagnóstico laboratorial, realizado em laboratório público, sem comorbidade e que não evoluíram para óbito. Observou-se autocorrelação espacial positiva das taxas de incidência na primeira e segunda onda da doença, sendo identificados clusters de alto risco, estatisticamente significantes, principalmente na região centro-sul do estado. Conclusão: Tais achados podem auxiliar a gestão, os sistemas e os serviços de saúde na implementação de medidas direcionadas à mitigação e ao controle da doença, subsidiando a redução de disparidades de saúde e desigualdades sociais no estado do Maranhão.Universidade Federal de Uberlândia2024-01-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/hygeia/article/view/6863910.14393/Hygeia2068639Hygeia - Revista Brasileira de Geografia Médica e da Saúde; v. 20 (2024); e20031980-1726reponame:Hygeia (Uberlândia)instname:Universidade Federal de Uberlândia (UFU)instacron:UFUporhttps://seer.ufu.br/index.php/hygeia/article/view/68639/37771Copyright (c) 2024 Janiel Conceição da Silva, Giana Gislanne da Silva de Sousa, Rayanne Alves de Oliveira, Lívia Fernanda Siqueira Santos, Isaura Letícia Tavares Palmeira Rolim, Lívia Maia Pascoal, Janaina Miranda Bezerra, Floriacy Stabnow Santos, Ana Cristina Pereira de Jesus Costa, Marcelino Santos Netoinfo:eu-repo/semantics/openAccessSilva, Janiel Conceição daSousa, Giana Gislanne da Silva de Oliveira, Rayanne Alves deSantos, Lívia Fernanda SiqueiraRolim, Isaura Letícia Tavares PalmeiraPascoal, Lívia MaiaBezerra, Janaina MirandaSantos, Floriacy StabnowCosta, Ana Cristina Pereira de JesusSantos Neto, Marcelino2024-05-14T21:00:03Zoai:ojs.www.seer.ufu.br:article/68639Revistahttps://seer.ufu.br/index.php/hygeiaPUBhttps://seer.ufu.br/index.php/hygeia/oaisamuel@ufu.br||flavia.santos@ufu.br1980-17261980-1726opendoar:2024-05-14T21:00:03Hygeia (Uberlândia) - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
CLINICAL-EPIDEMIOLOGICAL PROFILE AND SPATIAL AUTOCORRELATION OF COVID-19 CASES IN THE STATE OF MARANHÃO CARACTERIZAÇÃO CLÍNICO-EPIDEMIOLÓGICA E AUTOCORRELAÇÃO ESPACIAL DOS CASOS DE COVID-19 NO ESTADO DO MARANHÃO |
title |
CLINICAL-EPIDEMIOLOGICAL PROFILE AND SPATIAL AUTOCORRELATION OF COVID-19 CASES IN THE STATE OF MARANHÃO |
spellingShingle |
CLINICAL-EPIDEMIOLOGICAL PROFILE AND SPATIAL AUTOCORRELATION OF COVID-19 CASES IN THE STATE OF MARANHÃO Silva, Janiel Conceição da COVID-19 Incidência Epidemiologia Análise Espacial Sistemas de Informação Geográfica COVID-19 Incidence Epidemiology Spatial Analysis Geographic Information Systems |
title_short |
CLINICAL-EPIDEMIOLOGICAL PROFILE AND SPATIAL AUTOCORRELATION OF COVID-19 CASES IN THE STATE OF MARANHÃO |
title_full |
CLINICAL-EPIDEMIOLOGICAL PROFILE AND SPATIAL AUTOCORRELATION OF COVID-19 CASES IN THE STATE OF MARANHÃO |
title_fullStr |
CLINICAL-EPIDEMIOLOGICAL PROFILE AND SPATIAL AUTOCORRELATION OF COVID-19 CASES IN THE STATE OF MARANHÃO |
title_full_unstemmed |
CLINICAL-EPIDEMIOLOGICAL PROFILE AND SPATIAL AUTOCORRELATION OF COVID-19 CASES IN THE STATE OF MARANHÃO |
title_sort |
CLINICAL-EPIDEMIOLOGICAL PROFILE AND SPATIAL AUTOCORRELATION OF COVID-19 CASES IN THE STATE OF MARANHÃO |
author |
Silva, Janiel Conceição da |
author_facet |
Silva, Janiel Conceição da Sousa, Giana Gislanne da Silva de Oliveira, Rayanne Alves de Santos, Lívia Fernanda Siqueira Rolim, Isaura Letícia Tavares Palmeira Pascoal, Lívia Maia Bezerra, Janaina Miranda Santos, Floriacy Stabnow Costa, Ana Cristina Pereira de Jesus Santos Neto, Marcelino |
author_role |
author |
author2 |
Sousa, Giana Gislanne da Silva de Oliveira, Rayanne Alves de Santos, Lívia Fernanda Siqueira Rolim, Isaura Letícia Tavares Palmeira Pascoal, Lívia Maia Bezerra, Janaina Miranda Santos, Floriacy Stabnow Costa, Ana Cristina Pereira de Jesus Santos Neto, Marcelino |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Silva, Janiel Conceição da Sousa, Giana Gislanne da Silva de Oliveira, Rayanne Alves de Santos, Lívia Fernanda Siqueira Rolim, Isaura Letícia Tavares Palmeira Pascoal, Lívia Maia Bezerra, Janaina Miranda Santos, Floriacy Stabnow Costa, Ana Cristina Pereira de Jesus Santos Neto, Marcelino |
dc.subject.por.fl_str_mv |
COVID-19 Incidência Epidemiologia Análise Espacial Sistemas de Informação Geográfica COVID-19 Incidence Epidemiology Spatial Analysis Geographic Information Systems |
topic |
COVID-19 Incidência Epidemiologia Análise Espacial Sistemas de Informação Geográfica COVID-19 Incidence Epidemiology Spatial Analysis Geographic Information Systems |
description |
Objective: To describe the clinical-epidemiological characteristics and the spatial autocorrelation of COVID-19 in the state of Maranhão. Method: This is a descriptive and ecological study using the municipalities of the state as ecological units of analysis. All new cases of COVID-19, registered between March 2020 and January 2022 in the COVID-19 Notification System in Maranhão were considered for the study. The clinical-epidemiological variables were analyzed using descriptive statistics. Age-standardized incidence rates were determined by State municipalities and spatial autocorrelation was verified using global and local Moran indices. Results: A total of 386,567 cases were registered; the majority were female, mixed race/color, aged between 30 and 39 years, with laboratory diagnosis criteria, performed in a public laboratory, without comorbidity and that did not evolve to death. A positive spatial autocorrelation of the incidence rates in the first and second wave of the disease was observed, with statistically significant high-risk clusters being identified, mainly in the central-southern region of the State. Conclusion: Such findings can help health management, systems and services in the implementation of measures aimed at mitigating and controlling the disease, subsidizing the reduction of health disparities and social inequalities in the State of Maranhão. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-22 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/hygeia/article/view/68639 10.14393/Hygeia2068639 |
url |
https://seer.ufu.br/index.php/hygeia/article/view/68639 |
identifier_str_mv |
10.14393/Hygeia2068639 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/hygeia/article/view/68639/37771 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia |
dc.source.none.fl_str_mv |
Hygeia - Revista Brasileira de Geografia Médica e da Saúde; v. 20 (2024); e2003 1980-1726 reponame:Hygeia (Uberlândia) instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Hygeia (Uberlândia) |
collection |
Hygeia (Uberlândia) |
repository.name.fl_str_mv |
Hygeia (Uberlândia) - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
samuel@ufu.br||flavia.santos@ufu.br |
_version_ |
1799944281520078848 |