Analysis of the determinants of labor productivity in Brazilian regions in the periods 2012 and 2019
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Economia Ensaios |
Texto Completo: | https://seer.ufu.br/index.php/revistaeconomiaensaios/article/view/61526 |
Resumo: | This paper aims to identify the determinants of labor productivity in the Brazilian regions for 2012-2019. With data from PNADC (National Continuous Household Survey), a panel fixed-effect analysis and a quantile regression were used to detect the determinants of productivity. The results indicate that in all regions the majority of the population is male and that the service sector employs the most workers. Regarding the income variable, the Northeast region has the lowest remuneration, and the Midwest region stands out with the highest. It can be inferred that the variables education, public and formal, are statistically significant and have a positive impact on productivity in all Brazilian regions for 2012 and 2019. Through the quantile regression estimated for Brazil, it was found that for the year 2012, productivity can be explained for the lower quantiles, while in 2019, the significance of the data had an impact on the larger quantiles. |
id |
UFU-9_6690dce3a20a85ebc645e8192c7cf94b |
---|---|
oai_identifier_str |
oai:ojs.www.seer.ufu.br:article/61526 |
network_acronym_str |
UFU-9 |
network_name_str |
Economia Ensaios |
repository_id_str |
|
spelling |
Analysis of the determinants of labor productivity in Brazilian regions in the periods 2012 and 2019Análise dos determinantes da produtividade do trabalho nas regiões brasileiras nos períodos 2012 e 2019Produtividadedados em painelregiões brasileirasProductivitypanel dataBrazilian regionsThis paper aims to identify the determinants of labor productivity in the Brazilian regions for 2012-2019. With data from PNADC (National Continuous Household Survey), a panel fixed-effect analysis and a quantile regression were used to detect the determinants of productivity. The results indicate that in all regions the majority of the population is male and that the service sector employs the most workers. Regarding the income variable, the Northeast region has the lowest remuneration, and the Midwest region stands out with the highest. It can be inferred that the variables education, public and formal, are statistically significant and have a positive impact on productivity in all Brazilian regions for 2012 and 2019. Through the quantile regression estimated for Brazil, it was found that for the year 2012, productivity can be explained for the lower quantiles, while in 2019, the significance of the data had an impact on the larger quantiles.Este artigo tem como objetivo identificar os determinantes da produtividade do trabalho nas regiões brasileiras para os anos de 2012 e 2019. Com os dados da PNADC (Pesquisa Nacional por Amostra de Domicílios Contínua), utilizou-se uma análise de efeito fixo para painel e uma regressão quantílica para detectar os determinantes da produtividade. Os resultados indicam que em todas as regiões a maioria da população é masculina e que o setor de serviços é o que mais ocupa trabalhadores. Em torno da variável “rendimento”, a região Nordeste é a que apresenta menor remuneração e a região Centro Oeste se destaca com a maior. Pode-se inferir que as variáveis escolaridade, público e formalidade do trabalhador são significantes estatisticamente e impactam positivamente na produtividade em todas as regiões brasileiras para os anos de 2012 e 2019. Mediante regressão quantílica estimada para o Brasil, apurou-se que para o ano de 2012 a produtividade consegue ser explicada para os quantis mais baixos, enquanto que em 2019, a significância dos dados teve um impacto nos quantis maiores.EDUFU2023-04-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.ufu.br/index.php/revistaeconomiaensaios/article/view/6152610.14393/REE-v38n1a2023-61526Revista Economia Ensaios; Vol. 38 No. 1 (2023)Revista Economia Ensaios; v. 38 n. 1 (2023)1983-19940102-2482reponame:Economia Ensaiosinstname:Universidade Federal de Uberlândia (UFU)instacron:UFUporhttps://seer.ufu.br/index.php/revistaeconomiaensaios/article/view/61526/35989Copyright (c) 2023 Revista Economia Ensaiosinfo:eu-repo/semantics/openAccessde Vasconcelos Souza, DiegoJorge Alves, Pedro2023-04-26T16:18:33Zoai:ojs.www.seer.ufu.br:article/61526Revistahttps://seer.ufu.br/index.php/revistaeconomiaensaiosPUBhttps://seer.ufu.br/index.php/revistaeconomiaensaios/oai||ecoensaios@ufu.br|| ecoensaios@ufu.br1983-19940102-2482opendoar:2023-04-26T16:18:33Economia Ensaios - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Analysis of the determinants of labor productivity in Brazilian regions in the periods 2012 and 2019 Análise dos determinantes da produtividade do trabalho nas regiões brasileiras nos períodos 2012 e 2019 |
title |
Analysis of the determinants of labor productivity in Brazilian regions in the periods 2012 and 2019 |
spellingShingle |
Analysis of the determinants of labor productivity in Brazilian regions in the periods 2012 and 2019 de Vasconcelos Souza, Diego Produtividade dados em painel regiões brasileiras Productivity panel data Brazilian regions |
title_short |
Analysis of the determinants of labor productivity in Brazilian regions in the periods 2012 and 2019 |
title_full |
Analysis of the determinants of labor productivity in Brazilian regions in the periods 2012 and 2019 |
title_fullStr |
Analysis of the determinants of labor productivity in Brazilian regions in the periods 2012 and 2019 |
title_full_unstemmed |
Analysis of the determinants of labor productivity in Brazilian regions in the periods 2012 and 2019 |
title_sort |
Analysis of the determinants of labor productivity in Brazilian regions in the periods 2012 and 2019 |
author |
de Vasconcelos Souza, Diego |
author_facet |
de Vasconcelos Souza, Diego Jorge Alves, Pedro |
author_role |
author |
author2 |
Jorge Alves, Pedro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
de Vasconcelos Souza, Diego Jorge Alves, Pedro |
dc.subject.por.fl_str_mv |
Produtividade dados em painel regiões brasileiras Productivity panel data Brazilian regions |
topic |
Produtividade dados em painel regiões brasileiras Productivity panel data Brazilian regions |
description |
This paper aims to identify the determinants of labor productivity in the Brazilian regions for 2012-2019. With data from PNADC (National Continuous Household Survey), a panel fixed-effect analysis and a quantile regression were used to detect the determinants of productivity. The results indicate that in all regions the majority of the population is male and that the service sector employs the most workers. Regarding the income variable, the Northeast region has the lowest remuneration, and the Midwest region stands out with the highest. It can be inferred that the variables education, public and formal, are statistically significant and have a positive impact on productivity in all Brazilian regions for 2012 and 2019. Through the quantile regression estimated for Brazil, it was found that for the year 2012, productivity can be explained for the lower quantiles, while in 2019, the significance of the data had an impact on the larger quantiles. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04-26 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.ufu.br/index.php/revistaeconomiaensaios/article/view/61526 10.14393/REE-v38n1a2023-61526 |
url |
https://seer.ufu.br/index.php/revistaeconomiaensaios/article/view/61526 |
identifier_str_mv |
10.14393/REE-v38n1a2023-61526 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.ufu.br/index.php/revistaeconomiaensaios/article/view/61526/35989 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Revista Economia Ensaios info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Revista Economia Ensaios |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EDUFU |
publisher.none.fl_str_mv |
EDUFU |
dc.source.none.fl_str_mv |
Revista Economia Ensaios; Vol. 38 No. 1 (2023) Revista Economia Ensaios; v. 38 n. 1 (2023) 1983-1994 0102-2482 reponame:Economia Ensaios instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Economia Ensaios |
collection |
Economia Ensaios |
repository.name.fl_str_mv |
Economia Ensaios - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
||ecoensaios@ufu.br|| ecoensaios@ufu.br |
_version_ |
1799944251765686272 |