UAV-Multispectral Sensed Data Band Co-Registration Framework

Detalhes bibliográficos
Autor(a) principal: Dias Junior, Jocival Dantas
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/28887
http://doi.org/10.14393/ufu.di.2020.289
Resumo: Precision farming has greatly benefited from new technologies over the years. The use of multispectral and hyperspectral sensors coupled to Unmanned Aerial Vehicles (UAV) has enabled farms to monitor crops, improve the use of resources and reduce costs. Despite being widely used, multispectral images present a natural misalignment among the various spectra due to the use of different sensors. The variation of the analyzed spectrum also leads to a loss of characteristics among the bands which hinders the feature detection process among the bands, which makes the alignment process complex. In this work, we propose a new framework for the band co-registration process based on two premises: i) the natural misalignment is an attribute of the camera, so it does not change during the acquisition process; ii) the speed of displacement of the UAV when compared to the speed between the acquisition of the first to the last band, is not sufficient to create significant distortions. We compared our results with the ground-truth generated by a specialist and with other methods present in the literature. The proposed framework had an average back-projection (BP) error of 0.425 pixels, this result being 335% better than the evaluated frameworks.
id UFU_0aa2c4771fadad3279bab2fd9ac73fac
oai_identifier_str oai:repositorio.ufu.br:123456789/28887
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling UAV-Multispectral Sensed Data Band Co-Registration FrameworkUAV-Multispectral Sensed Data Band Co-Registration FrameworkUAVMULTISPECTRAL REGISTRATIONBAND-TO-BAND REGISTRATIONBAND CO-REGISTRATIONREGISTRATION FRAMEWORKCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOPrecision farming has greatly benefited from new technologies over the years. The use of multispectral and hyperspectral sensors coupled to Unmanned Aerial Vehicles (UAV) has enabled farms to monitor crops, improve the use of resources and reduce costs. Despite being widely used, multispectral images present a natural misalignment among the various spectra due to the use of different sensors. The variation of the analyzed spectrum also leads to a loss of characteristics among the bands which hinders the feature detection process among the bands, which makes the alignment process complex. In this work, we propose a new framework for the band co-registration process based on two premises: i) the natural misalignment is an attribute of the camera, so it does not change during the acquisition process; ii) the speed of displacement of the UAV when compared to the speed between the acquisition of the first to the last band, is not sufficient to create significant distortions. We compared our results with the ground-truth generated by a specialist and with other methods present in the literature. The proposed framework had an average back-projection (BP) error of 0.425 pixels, this result being 335% better than the evaluated frameworks.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)A agricultura de precisão se beneficiou muito das novas tecnologias ao longo dos anos. O uso de sensores multiespectrais e hiperespectrais acoplados aos Veículos Aéreos Não Tripulados (VANT) permitiu que as fazendas monitorassem as lavouras, melhorassem o uso de recursos e reduzissem os custos. Apesar de amplamente utilizadas, as imagens multiespectrais apresentam um desalinhamento natural entre os vários espectros devido ao uso de diferentes sensores. A variação do espectro analisado também leva à perda de características entre as bandas, o que dificulta o processo de detecção de atributos entre as bandas, o que torna complexo o processo de alinhamento. Neste trabalho, propomos um novo framework para o processo de alinhamento entre as bandas com base em duas premissas: i) o desalinhamento natural é um atributo da câmera, e por esse motivo ele não é alterado durante o processo de aquisição; ii) a velocidade de deslocamento do VANT, quando comparada à velocidade entre a aquisição da primeira e a última banda, não é suficiente para criar distorções significativas. Os resultados obtidos foram comparados com o padrão ouro gerado por um especialista e com outros métodos presentes na literatura. O framework proposto teve um back-projection error (BP) de 0, 425 pixels, sendo este resultado 335% melhor aos frameworks avaliados.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Ciência da ComputaçãoEscarpinati, Mauricio Cunhahttp://lattes.cnpq.br/5939941255055989Backes, André Ricardohttp://lattes.cnpq.br/8590140337571249Souza, Jefferson Rodrigo dehttp://lattes.cnpq.br/1805897404307170Marengoni, Mauríciohttp://lattes.cnpq.br/1974791787566027Dias Junior, Jocival Dantas2020-03-04T18:22:29Z2020-03-04T18:22:29Z2020-02-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfDIAS JUNIOR, Jocival Dantas. UAV-Multispectral Sensed Data Band Co-Registration Framework. 2020. 77 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.di.2020.289.https://repositorio.ufu.br/handle/123456789/28887http://doi.org/10.14393/ufu.di.2020.289enghttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2020-03-05T06:12:09Zoai:repositorio.ufu.br:123456789/28887Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2020-03-05T06:12:09Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv UAV-Multispectral Sensed Data Band Co-Registration Framework
UAV-Multispectral Sensed Data Band Co-Registration Framework
title UAV-Multispectral Sensed Data Band Co-Registration Framework
spellingShingle UAV-Multispectral Sensed Data Band Co-Registration Framework
Dias Junior, Jocival Dantas
UAV
MULTISPECTRAL REGISTRATION
BAND-TO-BAND REGISTRATION
BAND CO-REGISTRATION
REGISTRATION FRAMEWORK
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short UAV-Multispectral Sensed Data Band Co-Registration Framework
title_full UAV-Multispectral Sensed Data Band Co-Registration Framework
title_fullStr UAV-Multispectral Sensed Data Band Co-Registration Framework
title_full_unstemmed UAV-Multispectral Sensed Data Band Co-Registration Framework
title_sort UAV-Multispectral Sensed Data Band Co-Registration Framework
author Dias Junior, Jocival Dantas
author_facet Dias Junior, Jocival Dantas
author_role author
dc.contributor.none.fl_str_mv Escarpinati, Mauricio Cunha
http://lattes.cnpq.br/5939941255055989
Backes, André Ricardo
http://lattes.cnpq.br/8590140337571249
Souza, Jefferson Rodrigo de
http://lattes.cnpq.br/1805897404307170
Marengoni, Maurício
http://lattes.cnpq.br/1974791787566027
dc.contributor.author.fl_str_mv Dias Junior, Jocival Dantas
dc.subject.por.fl_str_mv UAV
MULTISPECTRAL REGISTRATION
BAND-TO-BAND REGISTRATION
BAND CO-REGISTRATION
REGISTRATION FRAMEWORK
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic UAV
MULTISPECTRAL REGISTRATION
BAND-TO-BAND REGISTRATION
BAND CO-REGISTRATION
REGISTRATION FRAMEWORK
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Precision farming has greatly benefited from new technologies over the years. The use of multispectral and hyperspectral sensors coupled to Unmanned Aerial Vehicles (UAV) has enabled farms to monitor crops, improve the use of resources and reduce costs. Despite being widely used, multispectral images present a natural misalignment among the various spectra due to the use of different sensors. The variation of the analyzed spectrum also leads to a loss of characteristics among the bands which hinders the feature detection process among the bands, which makes the alignment process complex. In this work, we propose a new framework for the band co-registration process based on two premises: i) the natural misalignment is an attribute of the camera, so it does not change during the acquisition process; ii) the speed of displacement of the UAV when compared to the speed between the acquisition of the first to the last band, is not sufficient to create significant distortions. We compared our results with the ground-truth generated by a specialist and with other methods present in the literature. The proposed framework had an average back-projection (BP) error of 0.425 pixels, this result being 335% better than the evaluated frameworks.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-04T18:22:29Z
2020-03-04T18:22:29Z
2020-02-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv DIAS JUNIOR, Jocival Dantas. UAV-Multispectral Sensed Data Band Co-Registration Framework. 2020. 77 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.di.2020.289.
https://repositorio.ufu.br/handle/123456789/28887
http://doi.org/10.14393/ufu.di.2020.289
identifier_str_mv DIAS JUNIOR, Jocival Dantas. UAV-Multispectral Sensed Data Band Co-Registration Framework. 2020. 77 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.di.2020.289.
url https://repositorio.ufu.br/handle/123456789/28887
http://doi.org/10.14393/ufu.di.2020.289
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Ciência da Computação
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711387336114176