Patofisiologia do ZIKA vírus em glândulas salivares e detecção biofotônica do ZIKA vírus na saliva associado com algoritmo de inteligência artificial

Detalhes bibliográficos
Autor(a) principal: Georjutti, Renata Pereira
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/35195
http://doi.org/10.14393/ufu.te.2022.288
Resumo: The Zika virus (ZIKV) belongs to the Flaviviridae family, therefore, it is related from the evolutionary point of view to other arboviruses transmitted by mosquitoes. The natural cycle of ZIKV transmission in Africa mainly involves wild vectors of the genus Aedes and monkeys. In late 2013, an epidemic outside Africa was reported in French Polynesia with more than 35,000 cases. This event alerted health officials to the potential for a pandemic spread of this virus which has also been identified in New Caledonia, the Cook Islands, and Easter Island. In 2015, the circulation of the ZIKV in Northeast Brazil was confirmed. Recently, the Ministry of Health of Brazil published a letter to confirm the presence of ZIKV in eight states, in the Northeast and Southeast regions of Brazil. Recent findings show the presence of ZIKV in blood, semen, urine, and saliva, suggesting that the transmission could also be through these additional fluids. Saliva is a non-invasive, painless biofluid, with a reduced collection cost compared to blood and can be highly accurate using analytical platforms appropriate for each disease. However, evidence of ZIKV infection in salivary glands and its potential effect on salivary diagnosis is still incipient literature. In this context, the objective of the thesis was divided into 3 chapters: 1) present a physiological mechanism of ZIKV entry into salivary gland cells and its potential impact on salivary diagnosis; 2) evaluate the molecular composition of the submandibular glands in an animal model of ZIKV; and 3) assess the discriminatory discrimination ability of ZKV in different saliva products using a sustainable, reagent-free, rapid, and non-invasive biophonic platform. In the first chapter, it was revisited the expression of mRNA and proteins in salivary glands related to the molecular mechanism of ZIKV infection in salivary glands. Among them are type C lectin receptors and phosphatidylserine receptors (PS type TIM1, TIM3, TIM4, TYRO3, and AXL). From a pathophysiological perspective related to diagnosis, the salivary glands can allow the entry of ZIKV through the aforementioned transporters, allow the replication of ZIKV and its secretion to the acinar and duct lumen until it reaches the oral cavity with saliva, which is essential to develop appropriate strategies to perform diagnostic platforms for early detection of ZIKV in saliva. In the second chapter, it was developed an animal model of ZIKV infection using two-month-old male C57/BL6 knockout mice for the interferon-gamma gene. ZIKV infection was performed by intradermal administration with ZIKV (50 µL, 1 x 105 PFU) and the control received vehicle (50 µL). To confirm ZIKV infection in this animal model, ZIKV RNA replication was evaluated in the spleen of mice. It was observed that the presence of collagen reduced (p < 0.05) and nucleic acids increased (p < 0.05) in the submandibular glands of ZIKV-infected mice. In the third chapter, it was identified that a machine learning algorithm based on LDA discriminated infected saliva with 10⁴ PFU/mL, which is similar to that found clinically in ZIKV infection, with 80.5% accuracy (sensitivity: 77.7% and specificity: 83.3%) from non-infected saliva. In this way, the results demonstrate a potential application of this sustainable biophotonic platform without the use of reagents coupled with machine learning algorithms to detect ZIKV in saliva. Together, the review on the expression of transporters for ZIKV entry into salivary gland cells allowed an understanding of the pathophysiology of ZIKV in the major and minor salivary glands and its effects on oral health. The detection of alterations in the expression of collagen and nucleic acids in an animal model of ZIKV reinforces the importance of the pathophysiology of ZIKV in tissues of the oral cavity, and also that further studies should be directed to the effects of ZIKV in salivary glands. Furthermore, we demonstrate that a sustainable biophotonic platform using infrared spectra of saliva coupled with an artificial intelligence algorithm can detect ZIKV at concentrations similar to those found clinically.
id UFU_36d22ad6be359ea323204d6dc3f4f378
oai_identifier_str oai:repositorio.ufu.br:123456789/35195
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Patofisiologia do ZIKA vírus em glândulas salivares e detecção biofotônica do ZIKA vírus na saliva associado com algoritmo de inteligência artificialPathophysiology of ZIKA virus in salivary glands and biophotonic detection of ZIKA virus in saliva associated with artificial intelligence algorithmZika VírusZika Virus,salivadiagnósticoATR-FTIRdiagnosisCNPQ::CIENCIAS DA SAUDE::ODONTOLOGIAOdontologiaVírus da ZikaInfecção pelo Zika vírusThe Zika virus (ZIKV) belongs to the Flaviviridae family, therefore, it is related from the evolutionary point of view to other arboviruses transmitted by mosquitoes. The natural cycle of ZIKV transmission in Africa mainly involves wild vectors of the genus Aedes and monkeys. In late 2013, an epidemic outside Africa was reported in French Polynesia with more than 35,000 cases. This event alerted health officials to the potential for a pandemic spread of this virus which has also been identified in New Caledonia, the Cook Islands, and Easter Island. In 2015, the circulation of the ZIKV in Northeast Brazil was confirmed. Recently, the Ministry of Health of Brazil published a letter to confirm the presence of ZIKV in eight states, in the Northeast and Southeast regions of Brazil. Recent findings show the presence of ZIKV in blood, semen, urine, and saliva, suggesting that the transmission could also be through these additional fluids. Saliva is a non-invasive, painless biofluid, with a reduced collection cost compared to blood and can be highly accurate using analytical platforms appropriate for each disease. However, evidence of ZIKV infection in salivary glands and its potential effect on salivary diagnosis is still incipient literature. In this context, the objective of the thesis was divided into 3 chapters: 1) present a physiological mechanism of ZIKV entry into salivary gland cells and its potential impact on salivary diagnosis; 2) evaluate the molecular composition of the submandibular glands in an animal model of ZIKV; and 3) assess the discriminatory discrimination ability of ZKV in different saliva products using a sustainable, reagent-free, rapid, and non-invasive biophonic platform. In the first chapter, it was revisited the expression of mRNA and proteins in salivary glands related to the molecular mechanism of ZIKV infection in salivary glands. Among them are type C lectin receptors and phosphatidylserine receptors (PS type TIM1, TIM3, TIM4, TYRO3, and AXL). From a pathophysiological perspective related to diagnosis, the salivary glands can allow the entry of ZIKV through the aforementioned transporters, allow the replication of ZIKV and its secretion to the acinar and duct lumen until it reaches the oral cavity with saliva, which is essential to develop appropriate strategies to perform diagnostic platforms for early detection of ZIKV in saliva. In the second chapter, it was developed an animal model of ZIKV infection using two-month-old male C57/BL6 knockout mice for the interferon-gamma gene. ZIKV infection was performed by intradermal administration with ZIKV (50 µL, 1 x 105 PFU) and the control received vehicle (50 µL). To confirm ZIKV infection in this animal model, ZIKV RNA replication was evaluated in the spleen of mice. It was observed that the presence of collagen reduced (p < 0.05) and nucleic acids increased (p < 0.05) in the submandibular glands of ZIKV-infected mice. In the third chapter, it was identified that a machine learning algorithm based on LDA discriminated infected saliva with 10⁴ PFU/mL, which is similar to that found clinically in ZIKV infection, with 80.5% accuracy (sensitivity: 77.7% and specificity: 83.3%) from non-infected saliva. In this way, the results demonstrate a potential application of this sustainable biophotonic platform without the use of reagents coupled with machine learning algorithms to detect ZIKV in saliva. Together, the review on the expression of transporters for ZIKV entry into salivary gland cells allowed an understanding of the pathophysiology of ZIKV in the major and minor salivary glands and its effects on oral health. The detection of alterations in the expression of collagen and nucleic acids in an animal model of ZIKV reinforces the importance of the pathophysiology of ZIKV in tissues of the oral cavity, and also that further studies should be directed to the effects of ZIKV in salivary glands. Furthermore, we demonstrate that a sustainable biophotonic platform using infrared spectra of saliva coupled with an artificial intelligence algorithm can detect ZIKV at concentrations similar to those found clinically.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)O vírus Zika (ZIKV) pertence à família Flaviridae e ao gênero Flavivirus sendo, portanto, similar do ponto de vista evolutivo com outros arbovírus transmitidos por mosquitos. O ciclo natural de transmissão do ZIKV na África envolve majoritariamente vetores silvestres do gênero Aedes e macacos. No fim de 2013, uma epidemia fora da África foi reportada na Polinésia Francesa com mais de 35 mil casos, alertando autoridades de saúde para o potencial de espalhamento pandêmico desta virose que também foi identificada na Nova Caledônia, Ilhas Cook e Ilha de Páscoa. Em 2015 foi confirmada a circulação do vírus no Nordeste do Brasil, a partir de isolamento viral em casos suspeitos de dengue. Recentemente, o Ministério da Saúde do Brasil publicou uma nota afirmando que casos da doença já haviam sido confirmados em mais de oito estados do país, nas regiões Norte, Nordeste e Sudeste. Foi demonstrado a presença do vírus zika (ZIKV) no sangue, sémen, urina e saliva, sugerindo que a detecção poderia ocorrer por estes fluidos corporais. A saliva é um biofluido não-invasivo, indolor, com custo de coleta reduzido em relação ao sangue e pode apresentar alta acurácia utilizando plataformas analíticas adequadas para cada doença. No entanto, as evidências com a infecção de ZIKV nas glândulas salivares e seu potencial efeito no diagnóstico salivar ainda apresentam literatura incipiente. Diante deste contexto o objetivo da tese foi dividido em 3 capítulos: 1) apresentação de um mecanismo patofisiológico da entrada do ZIKV em células de glândulas salivares e seu potencial impacto no diagnóstico salivar; 2) avaliação da composição molecular de glândulas submandibulares em um modelo animal de ZIKV; e 3) avaliação da capacidade de discriminação do ZIKV diluído em diferentes concentrações de saliva utilizando uma plataforma biofotônica sustentável, livre de reagentes, rápida e não invasiva. No primeiro capítulo foi revisitada a expressão de mRNA e proteínas em glândulas salivares relacionadas ao mecanismo molecular da infecção pela entrada do ZIKV em glândulas salivares. Entre eles estão os receptores de lectina tipo C e receptores de fosfatidilserina (PS do tipo TIM1, TIM3, TIM4, TYRO3 e AXL). Em uma perspectiva fisiopatológica relacionada com o diagnóstico, as glândulas salivares podem permitir a entrada do ZIKV pelos transportadores supracitados, permitir a replicação do ZIKV e sua secreção para o lúmen acinar e ductal até atingir a cavidade oral com a saliva, o que é fundamental para desenvolver estratégias adequadas para realizar plataformas diagnósticas para detecção precoce do ZIKV na saliva. No segundo capítulo foi desenvolvido um modelo animal de infecção por ZIKV utilizando camundongos machos C57/BL6 knockout para o gene interferon-gama. A infecção por ZIKV foi realizada por administração intradérmica com ZIKV (50 µL, 1 x 105 PFU), e os camundongos controle receberam apenas veículo (50 µL). Para confirmar a infecção pelo ZIKV neste modelo animal, a replicação do RNA do ZIKV foi confirmada no baço de camundongos. Baseado em uma análise por ATR-FTIR, foi observado que a presença de colágeno reduziu (p < 0,05) e os ácidos nucleicos aumentaram (p < 0,05) nas glândulas submandibulares de camundongos infectados por ZIKV. No terceiro capítulo, identificamos que um algoritmo de aprendizado de máquinas baseado em LDA classificou com 80,5% de acurácia (sensibilidade: 77,7% e especificidade: 83,3%) amostras de saliva infectadas com 10⁴ PFU/mL, o que é similar à concentração encontrada clinicamente na infecção pelo ZIKV. Desta forma, os resultados demonstram uma aplicação potencial desta plataforma biofotônica sustentável sem o uso de reagentes, acoplada com algoritmos de aprendizado de máquina para detectar ZIKV na saliva. Em conjunto, a revisão sobre a expressão dos transportadores para a entrada do ZIKV nas células de glândulas salivares permitiu a compreensão da patofisiologia do ZIKV nas glândulas salivares maiores e menores, e seus efeitos na saúde oral. A detecção de alterações na expressão de colágeno e ácidos nucleicos em um modelo animal de ZIKV reforça a importância da compreensão da patofisiologia do ZIKV em tecidos da cavidade oral, e também que mais estudos devem ser direcionados aos efeitos do ZIKV em glândulas salivares. Além disso, demonstrou-se que uma plataforma biofotônica sustentável utilizando espectros infravermelho da saliva, acoplado com algoritmos de inteligência artificial, pode detectar o ZIKV em concentrações similares às encontradas clinicamente.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em OdontologiaSilva, Robinson Sabino dahttp://lattes.cnpq.br/1886483839073466Lima, Rafael Rodrigueshttp://lattes.cnpq.br/3512648574555468José, Diego Pandelóhttp://lattes.cnpq.br/0375251393332617Silva, Robinson Sabino daCV: http://lattes.cnpq.br/1886483839073466Novais, Veridiana Resendehttp://lattes.cnpq.br/4383958389503132Vitorino, Rui Miguel PinheiroGeorjutti, Renata Pereira2022-06-28T16:56:35Z2022-06-28T16:56:35Z2022-04-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfGEORJUTTI, Renata Pereira. Patofisiologia do ZIKA VÍRUS em glândulas salivares e detecção biofotônica do ZIKA VÍRUS na saliva associado com algoritmo de inteligência artificial. 2022. 67 f. Tese (Doutorado em Odontologia)- Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.288.https://repositorio.ufu.br/handle/123456789/35195http://doi.org/10.14393/ufu.te.2022.288porhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-01-22T19:00:26Zoai:repositorio.ufu.br:123456789/35195Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-01-22T19:00:26Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Patofisiologia do ZIKA vírus em glândulas salivares e detecção biofotônica do ZIKA vírus na saliva associado com algoritmo de inteligência artificial
Pathophysiology of ZIKA virus in salivary glands and biophotonic detection of ZIKA virus in saliva associated with artificial intelligence algorithm
title Patofisiologia do ZIKA vírus em glândulas salivares e detecção biofotônica do ZIKA vírus na saliva associado com algoritmo de inteligência artificial
spellingShingle Patofisiologia do ZIKA vírus em glândulas salivares e detecção biofotônica do ZIKA vírus na saliva associado com algoritmo de inteligência artificial
Georjutti, Renata Pereira
Zika Vírus
Zika Virus,
saliva
diagnóstico
ATR-FTIR
diagnosis
CNPQ::CIENCIAS DA SAUDE::ODONTOLOGIA
Odontologia
Vírus da Zika
Infecção pelo Zika vírus
title_short Patofisiologia do ZIKA vírus em glândulas salivares e detecção biofotônica do ZIKA vírus na saliva associado com algoritmo de inteligência artificial
title_full Patofisiologia do ZIKA vírus em glândulas salivares e detecção biofotônica do ZIKA vírus na saliva associado com algoritmo de inteligência artificial
title_fullStr Patofisiologia do ZIKA vírus em glândulas salivares e detecção biofotônica do ZIKA vírus na saliva associado com algoritmo de inteligência artificial
title_full_unstemmed Patofisiologia do ZIKA vírus em glândulas salivares e detecção biofotônica do ZIKA vírus na saliva associado com algoritmo de inteligência artificial
title_sort Patofisiologia do ZIKA vírus em glândulas salivares e detecção biofotônica do ZIKA vírus na saliva associado com algoritmo de inteligência artificial
author Georjutti, Renata Pereira
author_facet Georjutti, Renata Pereira
author_role author
dc.contributor.none.fl_str_mv Silva, Robinson Sabino da
http://lattes.cnpq.br/1886483839073466
Lima, Rafael Rodrigues
http://lattes.cnpq.br/3512648574555468
José, Diego Pandeló
http://lattes.cnpq.br/0375251393332617
Silva, Robinson Sabino da
CV: http://lattes.cnpq.br/1886483839073466
Novais, Veridiana Resende
http://lattes.cnpq.br/4383958389503132
Vitorino, Rui Miguel Pinheiro
dc.contributor.author.fl_str_mv Georjutti, Renata Pereira
dc.subject.por.fl_str_mv Zika Vírus
Zika Virus,
saliva
diagnóstico
ATR-FTIR
diagnosis
CNPQ::CIENCIAS DA SAUDE::ODONTOLOGIA
Odontologia
Vírus da Zika
Infecção pelo Zika vírus
topic Zika Vírus
Zika Virus,
saliva
diagnóstico
ATR-FTIR
diagnosis
CNPQ::CIENCIAS DA SAUDE::ODONTOLOGIA
Odontologia
Vírus da Zika
Infecção pelo Zika vírus
description The Zika virus (ZIKV) belongs to the Flaviviridae family, therefore, it is related from the evolutionary point of view to other arboviruses transmitted by mosquitoes. The natural cycle of ZIKV transmission in Africa mainly involves wild vectors of the genus Aedes and monkeys. In late 2013, an epidemic outside Africa was reported in French Polynesia with more than 35,000 cases. This event alerted health officials to the potential for a pandemic spread of this virus which has also been identified in New Caledonia, the Cook Islands, and Easter Island. In 2015, the circulation of the ZIKV in Northeast Brazil was confirmed. Recently, the Ministry of Health of Brazil published a letter to confirm the presence of ZIKV in eight states, in the Northeast and Southeast regions of Brazil. Recent findings show the presence of ZIKV in blood, semen, urine, and saliva, suggesting that the transmission could also be through these additional fluids. Saliva is a non-invasive, painless biofluid, with a reduced collection cost compared to blood and can be highly accurate using analytical platforms appropriate for each disease. However, evidence of ZIKV infection in salivary glands and its potential effect on salivary diagnosis is still incipient literature. In this context, the objective of the thesis was divided into 3 chapters: 1) present a physiological mechanism of ZIKV entry into salivary gland cells and its potential impact on salivary diagnosis; 2) evaluate the molecular composition of the submandibular glands in an animal model of ZIKV; and 3) assess the discriminatory discrimination ability of ZKV in different saliva products using a sustainable, reagent-free, rapid, and non-invasive biophonic platform. In the first chapter, it was revisited the expression of mRNA and proteins in salivary glands related to the molecular mechanism of ZIKV infection in salivary glands. Among them are type C lectin receptors and phosphatidylserine receptors (PS type TIM1, TIM3, TIM4, TYRO3, and AXL). From a pathophysiological perspective related to diagnosis, the salivary glands can allow the entry of ZIKV through the aforementioned transporters, allow the replication of ZIKV and its secretion to the acinar and duct lumen until it reaches the oral cavity with saliva, which is essential to develop appropriate strategies to perform diagnostic platforms for early detection of ZIKV in saliva. In the second chapter, it was developed an animal model of ZIKV infection using two-month-old male C57/BL6 knockout mice for the interferon-gamma gene. ZIKV infection was performed by intradermal administration with ZIKV (50 µL, 1 x 105 PFU) and the control received vehicle (50 µL). To confirm ZIKV infection in this animal model, ZIKV RNA replication was evaluated in the spleen of mice. It was observed that the presence of collagen reduced (p < 0.05) and nucleic acids increased (p < 0.05) in the submandibular glands of ZIKV-infected mice. In the third chapter, it was identified that a machine learning algorithm based on LDA discriminated infected saliva with 10⁴ PFU/mL, which is similar to that found clinically in ZIKV infection, with 80.5% accuracy (sensitivity: 77.7% and specificity: 83.3%) from non-infected saliva. In this way, the results demonstrate a potential application of this sustainable biophotonic platform without the use of reagents coupled with machine learning algorithms to detect ZIKV in saliva. Together, the review on the expression of transporters for ZIKV entry into salivary gland cells allowed an understanding of the pathophysiology of ZIKV in the major and minor salivary glands and its effects on oral health. The detection of alterations in the expression of collagen and nucleic acids in an animal model of ZIKV reinforces the importance of the pathophysiology of ZIKV in tissues of the oral cavity, and also that further studies should be directed to the effects of ZIKV in salivary glands. Furthermore, we demonstrate that a sustainable biophotonic platform using infrared spectra of saliva coupled with an artificial intelligence algorithm can detect ZIKV at concentrations similar to those found clinically.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-28T16:56:35Z
2022-06-28T16:56:35Z
2022-04-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv GEORJUTTI, Renata Pereira. Patofisiologia do ZIKA VÍRUS em glândulas salivares e detecção biofotônica do ZIKA VÍRUS na saliva associado com algoritmo de inteligência artificial. 2022. 67 f. Tese (Doutorado em Odontologia)- Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.288.
https://repositorio.ufu.br/handle/123456789/35195
http://doi.org/10.14393/ufu.te.2022.288
identifier_str_mv GEORJUTTI, Renata Pereira. Patofisiologia do ZIKA VÍRUS em glândulas salivares e detecção biofotônica do ZIKA VÍRUS na saliva associado com algoritmo de inteligência artificial. 2022. 67 f. Tese (Doutorado em Odontologia)- Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.288.
url https://repositorio.ufu.br/handle/123456789/35195
http://doi.org/10.14393/ufu.te.2022.288
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Odontologia
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Odontologia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1805569580997804032