Separação de gases por membranas de fibra oca revestida com nanopartículas de óxido de grafeno
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/35809 http://doi.org/10.14393/ufu.te.2022.315 |
Resumo: | Graphene oxide (GO) membranes are suitable for hydrogen (separation) mainly due to H_2 〖CO〗_2the transport microenvironment that the GO membrane provides. The way in which the layers are stacked can influence gas permeation, and therefore the deposition of a selective and highly permeable GO membrane on a suitable substrate is still a challenge. In this work we applied the vacuum assisted method to deposit GO layers in hollow alumina and spinel fibers with asymmetric pore distribution. Initially, 4 GO synthesis routes based on the modified Hummers method were evaluated. The methods differ from each other by the proportion of reagents, temperature control and exfoliation method. The suspensions named as OG1 and OG2 were produced with the same proportion of reagents, but the OG2 sample was maintained for longer (20 h) than the OG1 sample (1 h) at oxidation temperature close to 90°C. On the other hand, the exfoliation of the OG1 sample was performed in an ultrasonic bath, while the exfoliation method of the other samples produced was only mechanical agitation. For the OG3 sample, expanded graphite was used as a precursor agent and the temperature was controlled below 10°C during oxidation. The OG4 sample was synthesized using H3PO4 as an oxidizing agent, in addition to H2SO4, NaNO3 and KMnO4. The GO suspensions produced were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR), Raman Spectroscopy (RAMAN), Elemental Analysis (C, H, N and O), X-ray diffractometry (XRD) and Atomic Force Spectroscopy (AFM). According to the SEM, TEM and AFM analyses, the OG1 and OG2 samples showed more organized and oxidized leaves than the OG3 and OG4 samples, probably due to the higher temperature control in the oxidation step, since the OG3 sample was not synthesized at the indicated temperature of approximately 90°C and, during the synthesis of the OG4 sample, temperature was sharply elevated by the presence of additional oxidizing agents. Elemental analysis confirmed the highest O/C ratio in the OG1 and OG2 samples. Consequently, samples OG1 and OG2 showed higher mass loss than OG3 and OG4 samples during inert atmosphere heating up to 900°C (TGA analysis). XRD analyses also showed a higher oxidation of graphite in the OG1 and OG2 samples, which was visualized by the decrease of the graphitic domain for the oxidized graphite domains. The RAMAM spectra of the GO samples showed the expected characteristic peaks. The oxidized functional groups were more evident in the FT-IR spectra of the OG1 and OG2 samples than of the OG3 and OG4 samples. Therefore, for the present work, the synthesis and samples chosen for application of gas separation processes by graphene oxide composite membrane were OG1 and OG2. Then, hollow fibers of α-alumina and spinel were produced to act as supports of the GO membranes. The GO membranes were deposited on the supports by the vacuum-assisted dip-coating method under different conditions of concentration of the GO suspension, vacuum pressure and immersion time under vacuum. An intermediate layer of -alumina was deposited on the ceramic support in order to decrease the roughness of its outer surface. The composite GO membrane deposited on the α-alumina fiber with an intermediate layer of -alumina from a suspension at 0.1 g/L under vacuum of 600 mmHg for 2 min presented the highest H2 permeance of 70.64±0.0x10-7 mol s-1 m-2 Pa-1 and selectivity H2/N2 of 3.5 and H2/CO2 of 3.9. Compared to the literature results, however, the need for improvements in membrane selectivity for H2 is necessary, which can be later achieved by better controlling in the deposition process and consequent reduction of defects in the GO layer. In fact, although the -alumina layer provides a decrease in membrane roughness, the adhesion of the GO membrane on the support is impaired in this situation. In order to produce a composite GO membrane for CO2 separation, GO layers were deposited on the ceramic support from different concentrations of the GO suspension under vacuum at 200 mmHg for 10 min. In this case, the crosslinking of GO with with etilenodiamine favored CO2 permeation by the membrane, resulting in CO2 permeance of approximately 40x10-7 mol s-1 m-2 Pa-1 and CO2/N2 selectivity greater than 40. This result is superior or equivalent to the results reported in the literature for GO membranes. Therefore, this work allowed a deepening of knowledge about the synthesis of GO and favorable results for gas permeation in the composite membranes of GO produced. |
id |
UFU_545917f6616e05a2d70ac3e58b6a0265 |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/35809 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Separação de gases por membranas de fibra oca revestida com nanopartículas de óxido de grafenoGas separation by hollow fiber membranes coated with graphene oxide nanoparticlesMembranaMembraneÓxido de grafenoGraphene oxideSuporte cerâmicoCeramic supportFibra ocaHollow fiberSeparação de gasesGas separationCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAEngenharia QuímicaPesquisa mineralógicagasesGraphene oxide (GO) membranes are suitable for hydrogen (separation) mainly due to H_2 〖CO〗_2the transport microenvironment that the GO membrane provides. The way in which the layers are stacked can influence gas permeation, and therefore the deposition of a selective and highly permeable GO membrane on a suitable substrate is still a challenge. In this work we applied the vacuum assisted method to deposit GO layers in hollow alumina and spinel fibers with asymmetric pore distribution. Initially, 4 GO synthesis routes based on the modified Hummers method were evaluated. The methods differ from each other by the proportion of reagents, temperature control and exfoliation method. The suspensions named as OG1 and OG2 were produced with the same proportion of reagents, but the OG2 sample was maintained for longer (20 h) than the OG1 sample (1 h) at oxidation temperature close to 90°C. On the other hand, the exfoliation of the OG1 sample was performed in an ultrasonic bath, while the exfoliation method of the other samples produced was only mechanical agitation. For the OG3 sample, expanded graphite was used as a precursor agent and the temperature was controlled below 10°C during oxidation. The OG4 sample was synthesized using H3PO4 as an oxidizing agent, in addition to H2SO4, NaNO3 and KMnO4. The GO suspensions produced were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR), Raman Spectroscopy (RAMAN), Elemental Analysis (C, H, N and O), X-ray diffractometry (XRD) and Atomic Force Spectroscopy (AFM). According to the SEM, TEM and AFM analyses, the OG1 and OG2 samples showed more organized and oxidized leaves than the OG3 and OG4 samples, probably due to the higher temperature control in the oxidation step, since the OG3 sample was not synthesized at the indicated temperature of approximately 90°C and, during the synthesis of the OG4 sample, temperature was sharply elevated by the presence of additional oxidizing agents. Elemental analysis confirmed the highest O/C ratio in the OG1 and OG2 samples. Consequently, samples OG1 and OG2 showed higher mass loss than OG3 and OG4 samples during inert atmosphere heating up to 900°C (TGA analysis). XRD analyses also showed a higher oxidation of graphite in the OG1 and OG2 samples, which was visualized by the decrease of the graphitic domain for the oxidized graphite domains. The RAMAM spectra of the GO samples showed the expected characteristic peaks. The oxidized functional groups were more evident in the FT-IR spectra of the OG1 and OG2 samples than of the OG3 and OG4 samples. Therefore, for the present work, the synthesis and samples chosen for application of gas separation processes by graphene oxide composite membrane were OG1 and OG2. Then, hollow fibers of α-alumina and spinel were produced to act as supports of the GO membranes. The GO membranes were deposited on the supports by the vacuum-assisted dip-coating method under different conditions of concentration of the GO suspension, vacuum pressure and immersion time under vacuum. An intermediate layer of -alumina was deposited on the ceramic support in order to decrease the roughness of its outer surface. The composite GO membrane deposited on the α-alumina fiber with an intermediate layer of -alumina from a suspension at 0.1 g/L under vacuum of 600 mmHg for 2 min presented the highest H2 permeance of 70.64±0.0x10-7 mol s-1 m-2 Pa-1 and selectivity H2/N2 of 3.5 and H2/CO2 of 3.9. Compared to the literature results, however, the need for improvements in membrane selectivity for H2 is necessary, which can be later achieved by better controlling in the deposition process and consequent reduction of defects in the GO layer. In fact, although the -alumina layer provides a decrease in membrane roughness, the adhesion of the GO membrane on the support is impaired in this situation. In order to produce a composite GO membrane for CO2 separation, GO layers were deposited on the ceramic support from different concentrations of the GO suspension under vacuum at 200 mmHg for 10 min. In this case, the crosslinking of GO with with etilenodiamine favored CO2 permeation by the membrane, resulting in CO2 permeance of approximately 40x10-7 mol s-1 m-2 Pa-1 and CO2/N2 selectivity greater than 40. This result is superior or equivalent to the results reported in the literature for GO membranes. Therefore, this work allowed a deepening of knowledge about the synthesis of GO and favorable results for gas permeation in the composite membranes of GO produced.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)As membranas de óxido de grafeno (OG) apresentam aplicação adequada para separação de hidrogênio (H_2) e de gás carbônico (〖CO〗_2), devido principalmente ao microambiente de transporte que a membrana de OG fornece. A forma na qual as camadas estão empilhadas pode influenciar na permeação gasosa e, logo, a deposição de uma membrana de OG seletiva e altamente permeável em um substrato adequado ainda é um desafio. Neste trabalho aplicamos o método assistido por vácuo para depositar camadas de OG em fibras ocas de alumina e de espinélio com distribuição de poros assimétrica. Inicialmente, foram avaliadas 4 rotas de sínteses de OG baseadas no método de Hummers modificado. Os métodos diferem entre si pela proporção dos reagentes, controle de temperatura e método de esfoliação. As suspensões denominadas como OG1 e OG2 foram produzidas com a mesma proporção de reagentes, porém a amostra OG2 foi mantida por mais tempo (20 h) que a amostra OG1 (1 h) na temperatura de oxidação próxima a 90°C. Por outro lado, a esfoliação da amostra OG1 foi realizada em banho ultrassônico, enquanto que o método de esfoliação das demais amostras produzidas foi apenas agitação mecânica. Para a amostra OG3 utilizou-se grafite expandido como agente precursor e a temperatura foi controlada abaixo de 10°C durante a oxidação. A amostra OG4 foi sintetizada utilizando H3PO4 como agente oxidante, além de H2SO4, NaNO3 e KMnO4. As suspensões de OG produzidas foram caracterizadas por técnicas de Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão (MET), Espectroscopia de Infravermelho por Transformada de Fourier (FT-IR), Espectroscopia Raman (RAMAN), Análise Elementar (C, H, N e O), Difratometria de Raios-X (DRX) e Espectroscopia de Força Atômica (AFM, Atomic Force Microscopy). De acordo com as análises de MEV, MET e AFM, as amostras OG1 e OG2 apresentaram folhas mais organizadas e mais oxidadas que as amostras OG3 e OG4, provavelmente devido ao maior controle de temperatura na etapa de oxidação, visto que a amostra OG3 não foi sintetizada na temperatura indicada de aproximadamente 90°C e, durante a síntese da amostra OG4, a temperatura foi bruscamente elevada pela presença de agentes oxidantes adicionais. A análise elementar confirmou a maior relação O/C nas amostras OG1 e OG2. Consequentemente, as amostras OG1 e OG2 apresentaram maior perda de massa que as amostras OG3 e OG4 durante o aquecimento em atmosfera inerte até 900°C (análise TGA). As análises de DRX mostraram também uma maior oxidação do grafite nas amostras OG1 e OG2, o que foi visualizado pela diminuição do domínio 〖sp〗^2 grafítico para o domínio do grafite oxidado 〖sp〗^3. Os espectros RAMAM das amostras de OG apresentaram os picos característicos esperados. Os grupos funcionais oxidados foram mais evidentes nos espectros FT-IR das amostras OG1 e OG2 que das amostras OG3 e OG4. Portanto, para o presente trabalho, as sínteses e as amostras escolhidas para aplicação dos processos de separação gasosa por membrana compósita de óxido de grafeno foram OG1 e OG2. Então, fibras ocas de α-alumina e espinélio foram produzidas para atuarem como suportes das membranas de OG. As membranas de OG foram depositadas sobre os suportes pelo método de dip-coating assistido à vácuo em diferentes condições de concentração da suspensão de OG, pressão de vácuo e tempo de imersão sob vácuo. Uma camada intermediária de -alumina foi depositada sobre o suporte cerâmico a fim de diminuir a rugosidade da sua superfície externa. A membrana compósita de OG depositado sobre a fibra de α-alumina com uma camada intermediária de -alumina a partir de uma suspensão com contração de 0,1 g/L sob vácuo de 600 mmHg por 2 min apresentou os maiores valores de permeância de H2 de 70,64±0,0x10-7 mol s-1 m-2 Pa-1 e seletividade H2/N2 de 3,5 e H2/CO2 de 3,9. Em comparação com os resultados da literatura, ressalta-se, contudo, a necessidade de melhorias na seletividade da membrana para H2 pelo maior controle no processo de deposição e consequente diminuição de defeitos na camada de OG. De fato, embora a camada de -alumina proporcione uma diminuição na rugosidade da membrana, a aderência da membrana de OG sobre o suporte fica prejudicada nessa situação. Com intuito de produzir uma membrana compósita de OG para separação de CO2, foram depositadas camadas de OG sobre o suporte cerâmico a partir de diferentes concentrações da suspensão de OG sob vácuo a 200 mmHg durante 10 min. Neste caso, a reticulação do OG com etilenodiamina favoreceu a permeação de CO2 pela membrana, resultando em permeância de CO2 de aproximadamente 40x10-7 mol s-1 m-2 Pa-1 e seletividade CO2/N2 superior a 40, sendo esse resultado superior ou equivalente aos resultados reportados na literatura para membranas de OG. Portanto, esse trabalho permitiu um adensamento dos conhecimentos acerca da síntese de OG e resultados favoráveis para permeação de gases nas membranas compósitas de OG produzidas.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia QuímicaReis, Miria Hespanhol Mirandahttp://lattes.cnpq.br/2087228956469914Cardoso, Vicelma Luizhttp://lattes.cnpq.br/7947426011712250Vieira, Rafael Brunohttp://lattes.cnpq.br/6373988987586203Altino, Sarah Arveloshttp://lattes.cnpq.br/8375409235580771Aguiar, Mônica Lopeshttp://lattes.cnpq.br/0431688649128529Nogueira, Sandra Lúciahttp://lattes.cnpq.br/9913529831985105Ribeiro, Stella Rodrigues Ferreira Lima2022-08-25T18:23:24Z2022-08-25T18:23:24Z2022-06-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfRIBEIRO, Stella Rodrigues Ferreira Lima. Separação de gases por membrana de fibra oca revestidas com nanopartículas de óxido de grafeno. 2022. 114 f. Tese (Doutorado em Engenharia Química) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.315https://repositorio.ufu.br/handle/123456789/35809http://doi.org/10.14393/ufu.te.2022.315porhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2022-08-26T06:16:30Zoai:repositorio.ufu.br:123456789/35809Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2022-08-26T06:16:30Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Separação de gases por membranas de fibra oca revestida com nanopartículas de óxido de grafeno Gas separation by hollow fiber membranes coated with graphene oxide nanoparticles |
title |
Separação de gases por membranas de fibra oca revestida com nanopartículas de óxido de grafeno |
spellingShingle |
Separação de gases por membranas de fibra oca revestida com nanopartículas de óxido de grafeno Ribeiro, Stella Rodrigues Ferreira Lima Membrana Membrane Óxido de grafeno Graphene oxide Suporte cerâmico Ceramic support Fibra oca Hollow fiber Separação de gases Gas separation CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA Engenharia Química Pesquisa mineralógica gases |
title_short |
Separação de gases por membranas de fibra oca revestida com nanopartículas de óxido de grafeno |
title_full |
Separação de gases por membranas de fibra oca revestida com nanopartículas de óxido de grafeno |
title_fullStr |
Separação de gases por membranas de fibra oca revestida com nanopartículas de óxido de grafeno |
title_full_unstemmed |
Separação de gases por membranas de fibra oca revestida com nanopartículas de óxido de grafeno |
title_sort |
Separação de gases por membranas de fibra oca revestida com nanopartículas de óxido de grafeno |
author |
Ribeiro, Stella Rodrigues Ferreira Lima |
author_facet |
Ribeiro, Stella Rodrigues Ferreira Lima |
author_role |
author |
dc.contributor.none.fl_str_mv |
Reis, Miria Hespanhol Miranda http://lattes.cnpq.br/2087228956469914 Cardoso, Vicelma Luiz http://lattes.cnpq.br/7947426011712250 Vieira, Rafael Bruno http://lattes.cnpq.br/6373988987586203 Altino, Sarah Arvelos http://lattes.cnpq.br/8375409235580771 Aguiar, Mônica Lopes http://lattes.cnpq.br/0431688649128529 Nogueira, Sandra Lúcia http://lattes.cnpq.br/9913529831985105 |
dc.contributor.author.fl_str_mv |
Ribeiro, Stella Rodrigues Ferreira Lima |
dc.subject.por.fl_str_mv |
Membrana Membrane Óxido de grafeno Graphene oxide Suporte cerâmico Ceramic support Fibra oca Hollow fiber Separação de gases Gas separation CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA Engenharia Química Pesquisa mineralógica gases |
topic |
Membrana Membrane Óxido de grafeno Graphene oxide Suporte cerâmico Ceramic support Fibra oca Hollow fiber Separação de gases Gas separation CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA Engenharia Química Pesquisa mineralógica gases |
description |
Graphene oxide (GO) membranes are suitable for hydrogen (separation) mainly due to H_2 〖CO〗_2the transport microenvironment that the GO membrane provides. The way in which the layers are stacked can influence gas permeation, and therefore the deposition of a selective and highly permeable GO membrane on a suitable substrate is still a challenge. In this work we applied the vacuum assisted method to deposit GO layers in hollow alumina and spinel fibers with asymmetric pore distribution. Initially, 4 GO synthesis routes based on the modified Hummers method were evaluated. The methods differ from each other by the proportion of reagents, temperature control and exfoliation method. The suspensions named as OG1 and OG2 were produced with the same proportion of reagents, but the OG2 sample was maintained for longer (20 h) than the OG1 sample (1 h) at oxidation temperature close to 90°C. On the other hand, the exfoliation of the OG1 sample was performed in an ultrasonic bath, while the exfoliation method of the other samples produced was only mechanical agitation. For the OG3 sample, expanded graphite was used as a precursor agent and the temperature was controlled below 10°C during oxidation. The OG4 sample was synthesized using H3PO4 as an oxidizing agent, in addition to H2SO4, NaNO3 and KMnO4. The GO suspensions produced were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR), Raman Spectroscopy (RAMAN), Elemental Analysis (C, H, N and O), X-ray diffractometry (XRD) and Atomic Force Spectroscopy (AFM). According to the SEM, TEM and AFM analyses, the OG1 and OG2 samples showed more organized and oxidized leaves than the OG3 and OG4 samples, probably due to the higher temperature control in the oxidation step, since the OG3 sample was not synthesized at the indicated temperature of approximately 90°C and, during the synthesis of the OG4 sample, temperature was sharply elevated by the presence of additional oxidizing agents. Elemental analysis confirmed the highest O/C ratio in the OG1 and OG2 samples. Consequently, samples OG1 and OG2 showed higher mass loss than OG3 and OG4 samples during inert atmosphere heating up to 900°C (TGA analysis). XRD analyses also showed a higher oxidation of graphite in the OG1 and OG2 samples, which was visualized by the decrease of the graphitic domain for the oxidized graphite domains. The RAMAM spectra of the GO samples showed the expected characteristic peaks. The oxidized functional groups were more evident in the FT-IR spectra of the OG1 and OG2 samples than of the OG3 and OG4 samples. Therefore, for the present work, the synthesis and samples chosen for application of gas separation processes by graphene oxide composite membrane were OG1 and OG2. Then, hollow fibers of α-alumina and spinel were produced to act as supports of the GO membranes. The GO membranes were deposited on the supports by the vacuum-assisted dip-coating method under different conditions of concentration of the GO suspension, vacuum pressure and immersion time under vacuum. An intermediate layer of -alumina was deposited on the ceramic support in order to decrease the roughness of its outer surface. The composite GO membrane deposited on the α-alumina fiber with an intermediate layer of -alumina from a suspension at 0.1 g/L under vacuum of 600 mmHg for 2 min presented the highest H2 permeance of 70.64±0.0x10-7 mol s-1 m-2 Pa-1 and selectivity H2/N2 of 3.5 and H2/CO2 of 3.9. Compared to the literature results, however, the need for improvements in membrane selectivity for H2 is necessary, which can be later achieved by better controlling in the deposition process and consequent reduction of defects in the GO layer. In fact, although the -alumina layer provides a decrease in membrane roughness, the adhesion of the GO membrane on the support is impaired in this situation. In order to produce a composite GO membrane for CO2 separation, GO layers were deposited on the ceramic support from different concentrations of the GO suspension under vacuum at 200 mmHg for 10 min. In this case, the crosslinking of GO with with etilenodiamine favored CO2 permeation by the membrane, resulting in CO2 permeance of approximately 40x10-7 mol s-1 m-2 Pa-1 and CO2/N2 selectivity greater than 40. This result is superior or equivalent to the results reported in the literature for GO membranes. Therefore, this work allowed a deepening of knowledge about the synthesis of GO and favorable results for gas permeation in the composite membranes of GO produced. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-25T18:23:24Z 2022-08-25T18:23:24Z 2022-06-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
RIBEIRO, Stella Rodrigues Ferreira Lima. Separação de gases por membrana de fibra oca revestidas com nanopartículas de óxido de grafeno. 2022. 114 f. Tese (Doutorado em Engenharia Química) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.315 https://repositorio.ufu.br/handle/123456789/35809 http://doi.org/10.14393/ufu.te.2022.315 |
identifier_str_mv |
RIBEIRO, Stella Rodrigues Ferreira Lima. Separação de gases por membrana de fibra oca revestidas com nanopartículas de óxido de grafeno. 2022. 114 f. Tese (Doutorado em Engenharia Química) - Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.315 |
url |
https://repositorio.ufu.br/handle/123456789/35809 http://doi.org/10.14393/ufu.te.2022.315 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Química |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Química |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711440648863744 |