Decoding cortical response during motor tasks using brain connectivity

Detalhes bibliográficos
Autor(a) principal: Melo, Mariana Cardoso
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/29566
http://doi.org/10.14393/ufu.te.2020.3003
Resumo: Sensorimotor integration is defined as the capacity of the central nervous system to integrate different sources of stimuli and transform such inputs in motor actions. Traditional approaches to measure sensorimotor dynamics are based on sensorimotor rhythms detected by Electroencephalography (EEG), such as the Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS). However, it is still not clear what are the underlying cortical dynamics involved in voluntary movements, and there is a lack of understanding of the temporal flow patterns related to a task. Although the models for motor decoding have improved considerably over the past decade, Brain-Machine Interfaces (BMIs), such as those attempting to control upper-limb prostheses, are still far from the goal of reaching naturalistic and dexterous control like our natural limbs. In this thesis, a model using connectivity estimators on EEG signals is proposed, with the aim of mapping cortical dynamics involved in sensorimotor integration while performing motor tasks. Here, special focus is given to wrist movements, since they are extremely important for proper handling of objects and have not been adequately explored in current literature associated with neural and standard control models used for upper-limb prosthesis. After initial screening, Mutual Information (MI) was chosen as the connectivity strategy for the aforementioned task. To estimate the most important channels and connectivity pairs of MI, a preliminary analysis based on the differences between resting and execution was performed. After the selection, MIs were estimated at higher temporal resolution, and separated in alpha and beta bands, from which a set of features was extracted and used as input for a Support Vector Machine (SVM) classifier to estimate the motor tasks (wrist pronation and wrist supination). For validation, we also estimated motor tasks using a conventional method for sensorimotor analysis, extracting significant ERD components and classified the data using SVM. The results showed higher accuracies when using the proposed model in beta band and MI features (89.65%). Alpha band resulted in 73.68% accuracy. On the other hand, using ERD, the accuracy of the classifier was 60.73% and 62.49% for alpha and beta bands, respectively. We conclude that the proposed method using functional connectivity and a proper model for the selection of important pairs over specific frequency bands has better response in identifying wrist movements. This strategy could be potentially applied in BMIs that control prosthetic devices at various levels.
id UFU_5be5589b64be3b6758345853248150f7
oai_identifier_str oai:repositorio.ufu.br:123456789/29566
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Decoding cortical response during motor tasks using brain connectivityDecodificação da resposta cortical durante tarefas motoras usando conectividade do cérebroBrain ConnectivityMutual InformationMotor taskElectroencephalographyEvent-Related DesynchronizationBrain-Machine InterfacesCNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOSSensorimotor integration is defined as the capacity of the central nervous system to integrate different sources of stimuli and transform such inputs in motor actions. Traditional approaches to measure sensorimotor dynamics are based on sensorimotor rhythms detected by Electroencephalography (EEG), such as the Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS). However, it is still not clear what are the underlying cortical dynamics involved in voluntary movements, and there is a lack of understanding of the temporal flow patterns related to a task. Although the models for motor decoding have improved considerably over the past decade, Brain-Machine Interfaces (BMIs), such as those attempting to control upper-limb prostheses, are still far from the goal of reaching naturalistic and dexterous control like our natural limbs. In this thesis, a model using connectivity estimators on EEG signals is proposed, with the aim of mapping cortical dynamics involved in sensorimotor integration while performing motor tasks. Here, special focus is given to wrist movements, since they are extremely important for proper handling of objects and have not been adequately explored in current literature associated with neural and standard control models used for upper-limb prosthesis. After initial screening, Mutual Information (MI) was chosen as the connectivity strategy for the aforementioned task. To estimate the most important channels and connectivity pairs of MI, a preliminary analysis based on the differences between resting and execution was performed. After the selection, MIs were estimated at higher temporal resolution, and separated in alpha and beta bands, from which a set of features was extracted and used as input for a Support Vector Machine (SVM) classifier to estimate the motor tasks (wrist pronation and wrist supination). For validation, we also estimated motor tasks using a conventional method for sensorimotor analysis, extracting significant ERD components and classified the data using SVM. The results showed higher accuracies when using the proposed model in beta band and MI features (89.65%). Alpha band resulted in 73.68% accuracy. On the other hand, using ERD, the accuracy of the classifier was 60.73% and 62.49% for alpha and beta bands, respectively. We conclude that the proposed method using functional connectivity and a proper model for the selection of important pairs over specific frequency bands has better response in identifying wrist movements. This strategy could be potentially applied in BMIs that control prosthetic devices at various levels.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorTese (Doutorado)Sensorimotor integration is defined as the capacity of the central nervous system to integrate different sources of stimuli and transform such inputs in motor actions. Traditional approaches to measure sensorimotor dynamics are based on sensorimotor rhythms detected by Electroencephalography (EEG), such as the Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS). However, it is still not clear what are the underlying cortical dynamics involved in voluntary movements, and there is a lack of understanding of the temporal flow patterns related to a task. Although the models for motor decoding have improved considerably over the past decade, Brain-Machine Interfaces (BMIs), such as those attempting to control upper-limb prostheses, are still far from the goal of reaching naturalistic and dexterous control like our natural limbs. In this thesis, a model using connectivity estimators on EEG signals is proposed, with the aim of mapping cortical dynamics involved in sensorimotor integration while performing motor tasks. Here, special focus is given to wrist movements, since they are extremely important for proper handling of objects and have not been adequately explored in current literature associated with neural and standard control models used for upper-limb prosthesis. After initial screening, Mutual Information (MI) was chosen as the connectivity strategy for the aforementioned task. To estimate the most important channels and connectivity pairs of MI, a preliminary analysis based on the differences between resting and execution was performed. After the selection, MIs were estimated at higher temporal resolution, and separated in alpha and beta bands, from which a set of features was extracted and used as input for a Support Vector Machine (SVM) classifier to estimate the motor tasks (wrist pronation and wrist supination). For validation, we also estimated motor tasks using a conventional method for sensorimotor analysis, extracting significant ERD components and classified the data using SVM. The results showed higher accuracies when using the proposed model in beta band and MI features (89.65%). Alpha band resulted in 73.68% accuracy. On the other hand, using ERD, the accuracy of the classifier was 60.73% and 62.49% for alpha and beta bands, respectively. We conclude that the proposed method using functional connectivity and a proper model for the selection of important pairs over specific frequency bands has better response in identifying wrist movements. This strategy could be potentially applied in BMIs that control prosthetic devices at various levels.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia ElétricaSoares, Alcimar BarbosaAndrade, Adriano de OliveiraSiqueira Junior, Ailton Luiz DiasOliveira, Sérgio Ricardo de JesusBastos Filho, Teodiano FreireMelo, Mariana Cardoso2020-07-28T00:40:59Z2020-07-28T00:40:59Z2020-06-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfMELO, Mariana Cardoso. Decoding cortical response during motor tasks using brain connectivity. 2020. 116 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.te.2020.3003.https://repositorio.ufu.br/handle/123456789/29566http://doi.org/10.14393/ufu.te.2020.3003enghttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2020-07-28T06:18:31Zoai:repositorio.ufu.br:123456789/29566Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2020-07-28T06:18:31Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Decoding cortical response during motor tasks using brain connectivity
Decodificação da resposta cortical durante tarefas motoras usando conectividade do cérebro
title Decoding cortical response during motor tasks using brain connectivity
spellingShingle Decoding cortical response during motor tasks using brain connectivity
Melo, Mariana Cardoso
Brain Connectivity
Mutual Information
Motor task
Electroencephalography
Event-Related Desynchronization
Brain-Machine Interfaces
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
title_short Decoding cortical response during motor tasks using brain connectivity
title_full Decoding cortical response during motor tasks using brain connectivity
title_fullStr Decoding cortical response during motor tasks using brain connectivity
title_full_unstemmed Decoding cortical response during motor tasks using brain connectivity
title_sort Decoding cortical response during motor tasks using brain connectivity
author Melo, Mariana Cardoso
author_facet Melo, Mariana Cardoso
author_role author
dc.contributor.none.fl_str_mv Soares, Alcimar Barbosa
Andrade, Adriano de Oliveira
Siqueira Junior, Ailton Luiz Dias
Oliveira, Sérgio Ricardo de Jesus
Bastos Filho, Teodiano Freire
dc.contributor.author.fl_str_mv Melo, Mariana Cardoso
dc.subject.por.fl_str_mv Brain Connectivity
Mutual Information
Motor task
Electroencephalography
Event-Related Desynchronization
Brain-Machine Interfaces
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
topic Brain Connectivity
Mutual Information
Motor task
Electroencephalography
Event-Related Desynchronization
Brain-Machine Interfaces
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
description Sensorimotor integration is defined as the capacity of the central nervous system to integrate different sources of stimuli and transform such inputs in motor actions. Traditional approaches to measure sensorimotor dynamics are based on sensorimotor rhythms detected by Electroencephalography (EEG), such as the Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS). However, it is still not clear what are the underlying cortical dynamics involved in voluntary movements, and there is a lack of understanding of the temporal flow patterns related to a task. Although the models for motor decoding have improved considerably over the past decade, Brain-Machine Interfaces (BMIs), such as those attempting to control upper-limb prostheses, are still far from the goal of reaching naturalistic and dexterous control like our natural limbs. In this thesis, a model using connectivity estimators on EEG signals is proposed, with the aim of mapping cortical dynamics involved in sensorimotor integration while performing motor tasks. Here, special focus is given to wrist movements, since they are extremely important for proper handling of objects and have not been adequately explored in current literature associated with neural and standard control models used for upper-limb prosthesis. After initial screening, Mutual Information (MI) was chosen as the connectivity strategy for the aforementioned task. To estimate the most important channels and connectivity pairs of MI, a preliminary analysis based on the differences between resting and execution was performed. After the selection, MIs were estimated at higher temporal resolution, and separated in alpha and beta bands, from which a set of features was extracted and used as input for a Support Vector Machine (SVM) classifier to estimate the motor tasks (wrist pronation and wrist supination). For validation, we also estimated motor tasks using a conventional method for sensorimotor analysis, extracting significant ERD components and classified the data using SVM. The results showed higher accuracies when using the proposed model in beta band and MI features (89.65%). Alpha band resulted in 73.68% accuracy. On the other hand, using ERD, the accuracy of the classifier was 60.73% and 62.49% for alpha and beta bands, respectively. We conclude that the proposed method using functional connectivity and a proper model for the selection of important pairs over specific frequency bands has better response in identifying wrist movements. This strategy could be potentially applied in BMIs that control prosthetic devices at various levels.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-28T00:40:59Z
2020-07-28T00:40:59Z
2020-06-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MELO, Mariana Cardoso. Decoding cortical response during motor tasks using brain connectivity. 2020. 116 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.te.2020.3003.
https://repositorio.ufu.br/handle/123456789/29566
http://doi.org/10.14393/ufu.te.2020.3003
identifier_str_mv MELO, Mariana Cardoso. Decoding cortical response during motor tasks using brain connectivity. 2020. 116 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI http://doi.org/10.14393/ufu.te.2020.3003.
url https://repositorio.ufu.br/handle/123456789/29566
http://doi.org/10.14393/ufu.te.2020.3003
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711473523818496