Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.

Detalhes bibliográficos
Autor(a) principal: Arantes, Suelen Oliveira
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/41051
http://doi.org/10.14393/ufu.di.2023.8064
Resumo: In the global market for agricultural commodities, soybean [Glycine max (L.) Merrill] is the main oilseed crop grown in the world. In the 2019/2020 season, Brazil became the world's largest producer and exporter of grains of this species. The study of genetic diversity is a predictive way to choose parents, and obtaining estimates of genetic parameters allows breeders to analyze selection strategies and predict selection gains, consequently helping to identify and select superior genotypes. Thus, the objective of this study was to identify groups of soybean genotypes based on characters from the vegetative stage, in order to select parents for artificial hybridization in soybean and to indicate the relative contribution of the evaluated characters to genetic dissimilarity; estimate genetic and phenotypic parameters, evaluate the association between agronomic traits via phenotypic and genotypic correlations, analyze selection strategies via direct selection and selection indices, and select superior progenies. The experiment was conducted in the field at the Capim Branco experimental farm belonging to the Federal University of Uberlândia (UFU), in a randomized complete block design (RCB), with three replications. Six phenotypic characters were evaluated during the vegetative phase (V2) of the crop: hypocotyl length (CH), epicotyl length (CE), first internode length (CI), unifoliate leaf petiole length (CPFU), petiole length of the first trifoliate leaf (CPFT), plant height at vegetative stage (APV), and twelve agronomic characters: number of days to flowering (NDF), plant height at flowering (APF), number of nodes on the main stem at flowering (NNF), number of days to maturity (NDM), plant height at maturity (APM), number of nodes on the main stem at maturity (NNM), number of productive nodes at maturity (NNPM), number of pods per plant (NVP), first pod insertion height (AIV), lodging (ACM), grain yield per plant (PGP), grain yield in kg ha-1 (PROD). The data obtained at the V2 stage were analyzed using the GENES software, and the genetic diversity among the progenies was estimated using the methods: Tocher optimization, UPGMA and canonical variables. The agronomic traits were evaluated with the aid of the R software, via the mixed models approach (REML/BLUP), in which the genetic and phenotypic parameters, phenotypic and genotypic correlations, selection indices, gain from direct selection, indirectly and through selection indices (Classic, Sum of “Ranks” - M&M and Sum of “Ranks” with no definition of economic weights - M&M2). The PMGS_UFU081 and PMGS_UFU103 genotypes show greater genetic dissimilarity in relation to the others, and PMGS_UFU100 and PMGS_UFU104 are very similar genotypes. On the other hand, the PMGS_UFU081 and PMGS_UFU103 genotypes are quite different from the others, proving to be important genetic resources to explore maximum heterosis in future crosses. Despite the methods of Tocher, UPGMA and Canonical Variables not corroborating the groupings, they are efficient to represent the genetic diversity, with CE being the characteristic that most contributes to the study of genetic diversity in soybean germplasm in the vegetative phase. For the agronomic traits, the existence of genetic variability was detected by the likelihood test, at levels of 0, 01% and 0,001% for all analyzed traits and the heritability estimates ranged from 0,48 to 0,96, evidencing favorable conditions for the selection process. The PGP character presents a positive and high magnitude correlation with the NNM, NNPM and NVP characters, indicating that the selection on these characters can indirectly contribute to the increase of PGP. NDM also showed a positive correlation of high magnitude with the characters NNM, NNPM and NVP, indicating that selection aiming at precocity (reducing NDM) can cause decreases in the average of these characters. The index of the sum of "ranks" with the non-definition of economic weights proves to be the best selection strategy, and the progenies selected by this index were chosen to advance in the breeding program, which are: PMGS_UFU004, PMGS_UFU007, PMGS_UFU009, PMGS_UFU011, PMGS_UFU017, PMGS_UFU 018, PMGS_UFU019, PMGS_UFU021, PMGS_UFU022, PMGS_UFU025, PMGS_ UFU028, PMGS_UFU029, PMGS_UFU076, PMGS_UFU094.
id UFU_6607426f0ba48f60dff4535d86849d60
oai_identifier_str oai:repositorio.ufu.br:123456789/41051
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.Estimates of genetic and phenotypic parameters, correlations and genetic diversity in F3 and F4 soybean progenies.Glycine maxDiversidade GenéticaCorrelaçãoGanho de SeleçãoGenetic DiversityCorrelationSelection GainCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETALGenéticaODS::ODS 2. Fome zero e agricultura sustentável - Acabar com a fome, alcançar a segurança alimentar e melhoria da nutrição e promover a agricultura sustentável.In the global market for agricultural commodities, soybean [Glycine max (L.) Merrill] is the main oilseed crop grown in the world. In the 2019/2020 season, Brazil became the world's largest producer and exporter of grains of this species. The study of genetic diversity is a predictive way to choose parents, and obtaining estimates of genetic parameters allows breeders to analyze selection strategies and predict selection gains, consequently helping to identify and select superior genotypes. Thus, the objective of this study was to identify groups of soybean genotypes based on characters from the vegetative stage, in order to select parents for artificial hybridization in soybean and to indicate the relative contribution of the evaluated characters to genetic dissimilarity; estimate genetic and phenotypic parameters, evaluate the association between agronomic traits via phenotypic and genotypic correlations, analyze selection strategies via direct selection and selection indices, and select superior progenies. The experiment was conducted in the field at the Capim Branco experimental farm belonging to the Federal University of Uberlândia (UFU), in a randomized complete block design (RCB), with three replications. Six phenotypic characters were evaluated during the vegetative phase (V2) of the crop: hypocotyl length (CH), epicotyl length (CE), first internode length (CI), unifoliate leaf petiole length (CPFU), petiole length of the first trifoliate leaf (CPFT), plant height at vegetative stage (APV), and twelve agronomic characters: number of days to flowering (NDF), plant height at flowering (APF), number of nodes on the main stem at flowering (NNF), number of days to maturity (NDM), plant height at maturity (APM), number of nodes on the main stem at maturity (NNM), number of productive nodes at maturity (NNPM), number of pods per plant (NVP), first pod insertion height (AIV), lodging (ACM), grain yield per plant (PGP), grain yield in kg ha-1 (PROD). The data obtained at the V2 stage were analyzed using the GENES software, and the genetic diversity among the progenies was estimated using the methods: Tocher optimization, UPGMA and canonical variables. The agronomic traits were evaluated with the aid of the R software, via the mixed models approach (REML/BLUP), in which the genetic and phenotypic parameters, phenotypic and genotypic correlations, selection indices, gain from direct selection, indirectly and through selection indices (Classic, Sum of “Ranks” - M&M and Sum of “Ranks” with no definition of economic weights - M&M2). The PMGS_UFU081 and PMGS_UFU103 genotypes show greater genetic dissimilarity in relation to the others, and PMGS_UFU100 and PMGS_UFU104 are very similar genotypes. On the other hand, the PMGS_UFU081 and PMGS_UFU103 genotypes are quite different from the others, proving to be important genetic resources to explore maximum heterosis in future crosses. Despite the methods of Tocher, UPGMA and Canonical Variables not corroborating the groupings, they are efficient to represent the genetic diversity, with CE being the characteristic that most contributes to the study of genetic diversity in soybean germplasm in the vegetative phase. For the agronomic traits, the existence of genetic variability was detected by the likelihood test, at levels of 0, 01% and 0,001% for all analyzed traits and the heritability estimates ranged from 0,48 to 0,96, evidencing favorable conditions for the selection process. The PGP character presents a positive and high magnitude correlation with the NNM, NNPM and NVP characters, indicating that the selection on these characters can indirectly contribute to the increase of PGP. NDM also showed a positive correlation of high magnitude with the characters NNM, NNPM and NVP, indicating that selection aiming at precocity (reducing NDM) can cause decreases in the average of these characters. The index of the sum of "ranks" with the non-definition of economic weights proves to be the best selection strategy, and the progenies selected by this index were chosen to advance in the breeding program, which are: PMGS_UFU004, PMGS_UFU007, PMGS_UFU009, PMGS_UFU011, PMGS_UFU017, PMGS_UFU 018, PMGS_UFU019, PMGS_UFU021, PMGS_UFU022, PMGS_UFU025, PMGS_ UFU028, PMGS_UFU029, PMGS_UFU076, PMGS_UFU094.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)No mercado global de commodities agrícolas, a soja [Glycine max (L.) Merrill] é a principal oleaginosa cultivada no mundo. O Brasil na safra 2019/2020 passou a ser o maior produtor e exportador mundial de grãos desta espécie. O estudo da diversidade genética é uma forma preditiva para a escolha de genitores, e a obtenção das estimativas de parâmetros genéticos permite o melhorista analisar estratégias de seleção e predizer os ganhos de seleção, auxiliando por consequência na identificação e seleção de genótipos superiores. Assim, objetivou-se com este estudo identificar grupos de genótipos de soja com base em caracteres da fase vegetativa visando selecionar genitores para hibridação artificial em soja e indicar a contribuição relativa dos caracteres avaliados para a dissimilaridade genética; estimar parâmetros genéticos e fenotípicos, avaliar a associação entre caracteres agronômicos via correlações fenotípicas e genotípicas, analisar estratégias de seleção via seleção direta e índices de seleção e selecionar progênies superiores. O experimento foi conduzido em campo na fazenda experimental Capim Branco pertencente à Universidade Federal de Uberlândia (UFU), em delineamento de blocos completos ao acaso (DBC), com três repetições. Foram avaliados seis caracteres fenotípicos durante a fase vegetativa (V2) da cultura: Comprimento de hipocótilo (CH), comprimento de epicótilo (CE), comprimento do primeiro internódio (CI), Comprimento do pecíolo da folha unifoliolada (CPFU), comprimento do pecíolo da primeira folha trifoliada (CPFT), altura de planta (APV), e doze caracteres agronômicos: número de dias para o florescimento (NDF), altura da planta no florescimento (APF), número de nós na haste principal no florescimento (NNF), número de dias para a maturidade (NDM), altura da planta na maturidade (APM), número de nós na haste principal na maturidade (NNM), número de nós produtivos na maturidade (NNPM), número de vagens por planta (NVP), altura da inserção da primeira vagem (AIV), acamamento (ACM), produção de grãos por planta (PGP), produtividade de grãos em kg ha-1 (PROD). Os dados obtidos no estádio V2 foram analisados com o auxílio do software GENES, e a diversidade genética entre as progênies foi estimada pelos métodos: otimização de Tocher, UPGMA e variáveis canônicas. Os caracteres agronômicos foram avaliados com o auxílio do software R, via abordagem de modelos mistos (REML/BLUP), em que foram estimados os parâmetros genéticos e fenotípicos, as correlações fenotípicas e genotípicas, os índices de seleção, ganho com a seleção direta, indireta e por meio de índices de seleção (Clássico, Soma de “Ranks” - M&M e Soma de “Ranks” com a não definição dos pesos econômicos - M&M2). Os genótipos PMGS_UFU081 e PMGS_UFU103 apresentam maior dissimilaridade genética em relação aos demais, e PMGS_UFU100 e PMGS_UFU104 são genótipos muito similares. Em contrapartida os genótipos PMGS_UFU081 e PMGS_UFU103 mostram-se bastante divergentes dos demais, mostrando ser importantes recursos genéticos para explorar a máxima heterose em futuros cruzamentos. Apesar dos métodos de Tocher, UPGMA e Variáveis canônicas não corroborarem nos agrupamentos, eles são eficientes para representar a diversidade genética, sendo CE a característica que mais contribui para a o estudo da diversidade genética em germoplasma de soja na fase vegetativa. Para os caracteres agronômicos detectou-se existência de variabilidade genética pelo teste de verossimilhança, aos níveis de 0,01% e 0,001% para todos os caracteres analisados e as estimativas de herdabilidade oscilaram de 0,48 a 0,96, evidenciando condições favoráveis para o processo seletivo. O caráter PGP apresenta correlação positiva e de alta magnitude com os caracteres NNM, NNPM e NVP, indicando que a seleção sobre estes caracteres pode contribuir indiretamente para o aumento de PGP. NDM também apresentou correlação positiva e de alta magnitude com os caracteres NNM, NNPM e NVP, indicando que a seleção visando precocidade (reduzir NDM) pode ocasionar quedas na média destes caracteres. O índice da soma de “ranks” com a não definição dos pesos econômicos mostra ser a melhor estratégia de seleção, e as progênies selecionadas por este índice foram escolhidas para avançar no programa de melhoramento, que são: PMGS_UFU004, PMGS_UFU007, PMGS_UFU009, PMGS_UFU011, PMGS_UFU017, PMGS_UFU018, PMGS_UFU019, PMGS_UFU 021, PMGS_UFU022, PMGS_UFU025, PMGS_UFU028, PMGS_UFU029, PMGS_ UFU076, PMGS_UFU094.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Genética e BioquímicaDias, Polianna Alves Silvahttp://lattes.cnpq.br/6663773085460018Nogueira, Ana Paula Oliveirahttp://lattes.cnpq.br/0999266992389089Hamawaki, Osvaldo Toshiyukihttp://lattes.cnpq.br/9968435526825444Silveira, Gustavo dahttp://lattes.cnpq.br/1450629575665230Arantes, Suelen Oliveira2024-01-26T14:09:00Z2024-01-26T14:09:00Z2022-05-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfARANTES, Suelen Oliveira. Estimativas de parâmetros genéticos e fenotípicos, correlações, e diversidade genética em progênies F3 e F4 de soja. 2022. 95 f. Dissertação (Mestrado em Genética e Bioquímica) - Universidade Federal de Uberlândia, 2024. DOI http://doi.org/10.14393/ufu.di.2023.8064.https://repositorio.ufu.br/handle/123456789/41051http://doi.org/10.14393/ufu.di.2023.8064porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-01-27T06:17:39Zoai:repositorio.ufu.br:123456789/41051Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-01-27T06:17:39Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.
Estimates of genetic and phenotypic parameters, correlations and genetic diversity in F3 and F4 soybean progenies.
title Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.
spellingShingle Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.
Arantes, Suelen Oliveira
Glycine max
Diversidade Genética
Correlação
Ganho de Seleção
Genetic Diversity
Correlation
Selection Gain
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL
Genética
ODS::ODS 2. Fome zero e agricultura sustentável - Acabar com a fome, alcançar a segurança alimentar e melhoria da nutrição e promover a agricultura sustentável.
title_short Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.
title_full Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.
title_fullStr Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.
title_full_unstemmed Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.
title_sort Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.
author Arantes, Suelen Oliveira
author_facet Arantes, Suelen Oliveira
author_role author
dc.contributor.none.fl_str_mv Dias, Polianna Alves Silva
http://lattes.cnpq.br/6663773085460018
Nogueira, Ana Paula Oliveira
http://lattes.cnpq.br/0999266992389089
Hamawaki, Osvaldo Toshiyuki
http://lattes.cnpq.br/9968435526825444
Silveira, Gustavo da
http://lattes.cnpq.br/1450629575665230
dc.contributor.author.fl_str_mv Arantes, Suelen Oliveira
dc.subject.por.fl_str_mv Glycine max
Diversidade Genética
Correlação
Ganho de Seleção
Genetic Diversity
Correlation
Selection Gain
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL
Genética
ODS::ODS 2. Fome zero e agricultura sustentável - Acabar com a fome, alcançar a segurança alimentar e melhoria da nutrição e promover a agricultura sustentável.
topic Glycine max
Diversidade Genética
Correlação
Ganho de Seleção
Genetic Diversity
Correlation
Selection Gain
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL
Genética
ODS::ODS 2. Fome zero e agricultura sustentável - Acabar com a fome, alcançar a segurança alimentar e melhoria da nutrição e promover a agricultura sustentável.
description In the global market for agricultural commodities, soybean [Glycine max (L.) Merrill] is the main oilseed crop grown in the world. In the 2019/2020 season, Brazil became the world's largest producer and exporter of grains of this species. The study of genetic diversity is a predictive way to choose parents, and obtaining estimates of genetic parameters allows breeders to analyze selection strategies and predict selection gains, consequently helping to identify and select superior genotypes. Thus, the objective of this study was to identify groups of soybean genotypes based on characters from the vegetative stage, in order to select parents for artificial hybridization in soybean and to indicate the relative contribution of the evaluated characters to genetic dissimilarity; estimate genetic and phenotypic parameters, evaluate the association between agronomic traits via phenotypic and genotypic correlations, analyze selection strategies via direct selection and selection indices, and select superior progenies. The experiment was conducted in the field at the Capim Branco experimental farm belonging to the Federal University of Uberlândia (UFU), in a randomized complete block design (RCB), with three replications. Six phenotypic characters were evaluated during the vegetative phase (V2) of the crop: hypocotyl length (CH), epicotyl length (CE), first internode length (CI), unifoliate leaf petiole length (CPFU), petiole length of the first trifoliate leaf (CPFT), plant height at vegetative stage (APV), and twelve agronomic characters: number of days to flowering (NDF), plant height at flowering (APF), number of nodes on the main stem at flowering (NNF), number of days to maturity (NDM), plant height at maturity (APM), number of nodes on the main stem at maturity (NNM), number of productive nodes at maturity (NNPM), number of pods per plant (NVP), first pod insertion height (AIV), lodging (ACM), grain yield per plant (PGP), grain yield in kg ha-1 (PROD). The data obtained at the V2 stage were analyzed using the GENES software, and the genetic diversity among the progenies was estimated using the methods: Tocher optimization, UPGMA and canonical variables. The agronomic traits were evaluated with the aid of the R software, via the mixed models approach (REML/BLUP), in which the genetic and phenotypic parameters, phenotypic and genotypic correlations, selection indices, gain from direct selection, indirectly and through selection indices (Classic, Sum of “Ranks” - M&M and Sum of “Ranks” with no definition of economic weights - M&M2). The PMGS_UFU081 and PMGS_UFU103 genotypes show greater genetic dissimilarity in relation to the others, and PMGS_UFU100 and PMGS_UFU104 are very similar genotypes. On the other hand, the PMGS_UFU081 and PMGS_UFU103 genotypes are quite different from the others, proving to be important genetic resources to explore maximum heterosis in future crosses. Despite the methods of Tocher, UPGMA and Canonical Variables not corroborating the groupings, they are efficient to represent the genetic diversity, with CE being the characteristic that most contributes to the study of genetic diversity in soybean germplasm in the vegetative phase. For the agronomic traits, the existence of genetic variability was detected by the likelihood test, at levels of 0, 01% and 0,001% for all analyzed traits and the heritability estimates ranged from 0,48 to 0,96, evidencing favorable conditions for the selection process. The PGP character presents a positive and high magnitude correlation with the NNM, NNPM and NVP characters, indicating that the selection on these characters can indirectly contribute to the increase of PGP. NDM also showed a positive correlation of high magnitude with the characters NNM, NNPM and NVP, indicating that selection aiming at precocity (reducing NDM) can cause decreases in the average of these characters. The index of the sum of "ranks" with the non-definition of economic weights proves to be the best selection strategy, and the progenies selected by this index were chosen to advance in the breeding program, which are: PMGS_UFU004, PMGS_UFU007, PMGS_UFU009, PMGS_UFU011, PMGS_UFU017, PMGS_UFU 018, PMGS_UFU019, PMGS_UFU021, PMGS_UFU022, PMGS_UFU025, PMGS_ UFU028, PMGS_UFU029, PMGS_UFU076, PMGS_UFU094.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-30
2024-01-26T14:09:00Z
2024-01-26T14:09:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ARANTES, Suelen Oliveira. Estimativas de parâmetros genéticos e fenotípicos, correlações, e diversidade genética em progênies F3 e F4 de soja. 2022. 95 f. Dissertação (Mestrado em Genética e Bioquímica) - Universidade Federal de Uberlândia, 2024. DOI http://doi.org/10.14393/ufu.di.2023.8064.
https://repositorio.ufu.br/handle/123456789/41051
http://doi.org/10.14393/ufu.di.2023.8064
identifier_str_mv ARANTES, Suelen Oliveira. Estimativas de parâmetros genéticos e fenotípicos, correlações, e diversidade genética em progênies F3 e F4 de soja. 2022. 95 f. Dissertação (Mestrado em Genética e Bioquímica) - Universidade Federal de Uberlândia, 2024. DOI http://doi.org/10.14393/ufu.di.2023.8064.
url https://repositorio.ufu.br/handle/123456789/41051
http://doi.org/10.14393/ufu.di.2023.8064
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Genética e Bioquímica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Genética e Bioquímica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711524065181696