Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/41051 http://doi.org/10.14393/ufu.di.2023.8064 |
Resumo: | In the global market for agricultural commodities, soybean [Glycine max (L.) Merrill] is the main oilseed crop grown in the world. In the 2019/2020 season, Brazil became the world's largest producer and exporter of grains of this species. The study of genetic diversity is a predictive way to choose parents, and obtaining estimates of genetic parameters allows breeders to analyze selection strategies and predict selection gains, consequently helping to identify and select superior genotypes. Thus, the objective of this study was to identify groups of soybean genotypes based on characters from the vegetative stage, in order to select parents for artificial hybridization in soybean and to indicate the relative contribution of the evaluated characters to genetic dissimilarity; estimate genetic and phenotypic parameters, evaluate the association between agronomic traits via phenotypic and genotypic correlations, analyze selection strategies via direct selection and selection indices, and select superior progenies. The experiment was conducted in the field at the Capim Branco experimental farm belonging to the Federal University of Uberlândia (UFU), in a randomized complete block design (RCB), with three replications. Six phenotypic characters were evaluated during the vegetative phase (V2) of the crop: hypocotyl length (CH), epicotyl length (CE), first internode length (CI), unifoliate leaf petiole length (CPFU), petiole length of the first trifoliate leaf (CPFT), plant height at vegetative stage (APV), and twelve agronomic characters: number of days to flowering (NDF), plant height at flowering (APF), number of nodes on the main stem at flowering (NNF), number of days to maturity (NDM), plant height at maturity (APM), number of nodes on the main stem at maturity (NNM), number of productive nodes at maturity (NNPM), number of pods per plant (NVP), first pod insertion height (AIV), lodging (ACM), grain yield per plant (PGP), grain yield in kg ha-1 (PROD). The data obtained at the V2 stage were analyzed using the GENES software, and the genetic diversity among the progenies was estimated using the methods: Tocher optimization, UPGMA and canonical variables. The agronomic traits were evaluated with the aid of the R software, via the mixed models approach (REML/BLUP), in which the genetic and phenotypic parameters, phenotypic and genotypic correlations, selection indices, gain from direct selection, indirectly and through selection indices (Classic, Sum of “Ranks” - M&M and Sum of “Ranks” with no definition of economic weights - M&M2). The PMGS_UFU081 and PMGS_UFU103 genotypes show greater genetic dissimilarity in relation to the others, and PMGS_UFU100 and PMGS_UFU104 are very similar genotypes. On the other hand, the PMGS_UFU081 and PMGS_UFU103 genotypes are quite different from the others, proving to be important genetic resources to explore maximum heterosis in future crosses. Despite the methods of Tocher, UPGMA and Canonical Variables not corroborating the groupings, they are efficient to represent the genetic diversity, with CE being the characteristic that most contributes to the study of genetic diversity in soybean germplasm in the vegetative phase. For the agronomic traits, the existence of genetic variability was detected by the likelihood test, at levels of 0, 01% and 0,001% for all analyzed traits and the heritability estimates ranged from 0,48 to 0,96, evidencing favorable conditions for the selection process. The PGP character presents a positive and high magnitude correlation with the NNM, NNPM and NVP characters, indicating that the selection on these characters can indirectly contribute to the increase of PGP. NDM also showed a positive correlation of high magnitude with the characters NNM, NNPM and NVP, indicating that selection aiming at precocity (reducing NDM) can cause decreases in the average of these characters. The index of the sum of "ranks" with the non-definition of economic weights proves to be the best selection strategy, and the progenies selected by this index were chosen to advance in the breeding program, which are: PMGS_UFU004, PMGS_UFU007, PMGS_UFU009, PMGS_UFU011, PMGS_UFU017, PMGS_UFU 018, PMGS_UFU019, PMGS_UFU021, PMGS_UFU022, PMGS_UFU025, PMGS_ UFU028, PMGS_UFU029, PMGS_UFU076, PMGS_UFU094. |
id |
UFU_6607426f0ba48f60dff4535d86849d60 |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/41051 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja.Estimates of genetic and phenotypic parameters, correlations and genetic diversity in F3 and F4 soybean progenies.Glycine maxDiversidade GenéticaCorrelaçãoGanho de SeleçãoGenetic DiversityCorrelationSelection GainCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETALGenéticaODS::ODS 2. Fome zero e agricultura sustentável - Acabar com a fome, alcançar a segurança alimentar e melhoria da nutrição e promover a agricultura sustentável.In the global market for agricultural commodities, soybean [Glycine max (L.) Merrill] is the main oilseed crop grown in the world. In the 2019/2020 season, Brazil became the world's largest producer and exporter of grains of this species. The study of genetic diversity is a predictive way to choose parents, and obtaining estimates of genetic parameters allows breeders to analyze selection strategies and predict selection gains, consequently helping to identify and select superior genotypes. Thus, the objective of this study was to identify groups of soybean genotypes based on characters from the vegetative stage, in order to select parents for artificial hybridization in soybean and to indicate the relative contribution of the evaluated characters to genetic dissimilarity; estimate genetic and phenotypic parameters, evaluate the association between agronomic traits via phenotypic and genotypic correlations, analyze selection strategies via direct selection and selection indices, and select superior progenies. The experiment was conducted in the field at the Capim Branco experimental farm belonging to the Federal University of Uberlândia (UFU), in a randomized complete block design (RCB), with three replications. Six phenotypic characters were evaluated during the vegetative phase (V2) of the crop: hypocotyl length (CH), epicotyl length (CE), first internode length (CI), unifoliate leaf petiole length (CPFU), petiole length of the first trifoliate leaf (CPFT), plant height at vegetative stage (APV), and twelve agronomic characters: number of days to flowering (NDF), plant height at flowering (APF), number of nodes on the main stem at flowering (NNF), number of days to maturity (NDM), plant height at maturity (APM), number of nodes on the main stem at maturity (NNM), number of productive nodes at maturity (NNPM), number of pods per plant (NVP), first pod insertion height (AIV), lodging (ACM), grain yield per plant (PGP), grain yield in kg ha-1 (PROD). The data obtained at the V2 stage were analyzed using the GENES software, and the genetic diversity among the progenies was estimated using the methods: Tocher optimization, UPGMA and canonical variables. The agronomic traits were evaluated with the aid of the R software, via the mixed models approach (REML/BLUP), in which the genetic and phenotypic parameters, phenotypic and genotypic correlations, selection indices, gain from direct selection, indirectly and through selection indices (Classic, Sum of “Ranks” - M&M and Sum of “Ranks” with no definition of economic weights - M&M2). The PMGS_UFU081 and PMGS_UFU103 genotypes show greater genetic dissimilarity in relation to the others, and PMGS_UFU100 and PMGS_UFU104 are very similar genotypes. On the other hand, the PMGS_UFU081 and PMGS_UFU103 genotypes are quite different from the others, proving to be important genetic resources to explore maximum heterosis in future crosses. Despite the methods of Tocher, UPGMA and Canonical Variables not corroborating the groupings, they are efficient to represent the genetic diversity, with CE being the characteristic that most contributes to the study of genetic diversity in soybean germplasm in the vegetative phase. For the agronomic traits, the existence of genetic variability was detected by the likelihood test, at levels of 0, 01% and 0,001% for all analyzed traits and the heritability estimates ranged from 0,48 to 0,96, evidencing favorable conditions for the selection process. The PGP character presents a positive and high magnitude correlation with the NNM, NNPM and NVP characters, indicating that the selection on these characters can indirectly contribute to the increase of PGP. NDM also showed a positive correlation of high magnitude with the characters NNM, NNPM and NVP, indicating that selection aiming at precocity (reducing NDM) can cause decreases in the average of these characters. The index of the sum of "ranks" with the non-definition of economic weights proves to be the best selection strategy, and the progenies selected by this index were chosen to advance in the breeding program, which are: PMGS_UFU004, PMGS_UFU007, PMGS_UFU009, PMGS_UFU011, PMGS_UFU017, PMGS_UFU 018, PMGS_UFU019, PMGS_UFU021, PMGS_UFU022, PMGS_UFU025, PMGS_ UFU028, PMGS_UFU029, PMGS_UFU076, PMGS_UFU094.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)No mercado global de commodities agrícolas, a soja [Glycine max (L.) Merrill] é a principal oleaginosa cultivada no mundo. O Brasil na safra 2019/2020 passou a ser o maior produtor e exportador mundial de grãos desta espécie. O estudo da diversidade genética é uma forma preditiva para a escolha de genitores, e a obtenção das estimativas de parâmetros genéticos permite o melhorista analisar estratégias de seleção e predizer os ganhos de seleção, auxiliando por consequência na identificação e seleção de genótipos superiores. Assim, objetivou-se com este estudo identificar grupos de genótipos de soja com base em caracteres da fase vegetativa visando selecionar genitores para hibridação artificial em soja e indicar a contribuição relativa dos caracteres avaliados para a dissimilaridade genética; estimar parâmetros genéticos e fenotípicos, avaliar a associação entre caracteres agronômicos via correlações fenotípicas e genotípicas, analisar estratégias de seleção via seleção direta e índices de seleção e selecionar progênies superiores. O experimento foi conduzido em campo na fazenda experimental Capim Branco pertencente à Universidade Federal de Uberlândia (UFU), em delineamento de blocos completos ao acaso (DBC), com três repetições. Foram avaliados seis caracteres fenotípicos durante a fase vegetativa (V2) da cultura: Comprimento de hipocótilo (CH), comprimento de epicótilo (CE), comprimento do primeiro internódio (CI), Comprimento do pecíolo da folha unifoliolada (CPFU), comprimento do pecíolo da primeira folha trifoliada (CPFT), altura de planta (APV), e doze caracteres agronômicos: número de dias para o florescimento (NDF), altura da planta no florescimento (APF), número de nós na haste principal no florescimento (NNF), número de dias para a maturidade (NDM), altura da planta na maturidade (APM), número de nós na haste principal na maturidade (NNM), número de nós produtivos na maturidade (NNPM), número de vagens por planta (NVP), altura da inserção da primeira vagem (AIV), acamamento (ACM), produção de grãos por planta (PGP), produtividade de grãos em kg ha-1 (PROD). Os dados obtidos no estádio V2 foram analisados com o auxílio do software GENES, e a diversidade genética entre as progênies foi estimada pelos métodos: otimização de Tocher, UPGMA e variáveis canônicas. Os caracteres agronômicos foram avaliados com o auxílio do software R, via abordagem de modelos mistos (REML/BLUP), em que foram estimados os parâmetros genéticos e fenotípicos, as correlações fenotípicas e genotípicas, os índices de seleção, ganho com a seleção direta, indireta e por meio de índices de seleção (Clássico, Soma de “Ranks” - M&M e Soma de “Ranks” com a não definição dos pesos econômicos - M&M2). Os genótipos PMGS_UFU081 e PMGS_UFU103 apresentam maior dissimilaridade genética em relação aos demais, e PMGS_UFU100 e PMGS_UFU104 são genótipos muito similares. Em contrapartida os genótipos PMGS_UFU081 e PMGS_UFU103 mostram-se bastante divergentes dos demais, mostrando ser importantes recursos genéticos para explorar a máxima heterose em futuros cruzamentos. Apesar dos métodos de Tocher, UPGMA e Variáveis canônicas não corroborarem nos agrupamentos, eles são eficientes para representar a diversidade genética, sendo CE a característica que mais contribui para a o estudo da diversidade genética em germoplasma de soja na fase vegetativa. Para os caracteres agronômicos detectou-se existência de variabilidade genética pelo teste de verossimilhança, aos níveis de 0,01% e 0,001% para todos os caracteres analisados e as estimativas de herdabilidade oscilaram de 0,48 a 0,96, evidenciando condições favoráveis para o processo seletivo. O caráter PGP apresenta correlação positiva e de alta magnitude com os caracteres NNM, NNPM e NVP, indicando que a seleção sobre estes caracteres pode contribuir indiretamente para o aumento de PGP. NDM também apresentou correlação positiva e de alta magnitude com os caracteres NNM, NNPM e NVP, indicando que a seleção visando precocidade (reduzir NDM) pode ocasionar quedas na média destes caracteres. O índice da soma de “ranks” com a não definição dos pesos econômicos mostra ser a melhor estratégia de seleção, e as progênies selecionadas por este índice foram escolhidas para avançar no programa de melhoramento, que são: PMGS_UFU004, PMGS_UFU007, PMGS_UFU009, PMGS_UFU011, PMGS_UFU017, PMGS_UFU018, PMGS_UFU019, PMGS_UFU 021, PMGS_UFU022, PMGS_UFU025, PMGS_UFU028, PMGS_UFU029, PMGS_ UFU076, PMGS_UFU094.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Genética e BioquímicaDias, Polianna Alves Silvahttp://lattes.cnpq.br/6663773085460018Nogueira, Ana Paula Oliveirahttp://lattes.cnpq.br/0999266992389089Hamawaki, Osvaldo Toshiyukihttp://lattes.cnpq.br/9968435526825444Silveira, Gustavo dahttp://lattes.cnpq.br/1450629575665230Arantes, Suelen Oliveira2024-01-26T14:09:00Z2024-01-26T14:09:00Z2022-05-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfARANTES, Suelen Oliveira. Estimativas de parâmetros genéticos e fenotípicos, correlações, e diversidade genética em progênies F3 e F4 de soja. 2022. 95 f. Dissertação (Mestrado em Genética e Bioquímica) - Universidade Federal de Uberlândia, 2024. DOI http://doi.org/10.14393/ufu.di.2023.8064.https://repositorio.ufu.br/handle/123456789/41051http://doi.org/10.14393/ufu.di.2023.8064porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-01-27T06:17:39Zoai:repositorio.ufu.br:123456789/41051Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-01-27T06:17:39Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja. Estimates of genetic and phenotypic parameters, correlations and genetic diversity in F3 and F4 soybean progenies. |
title |
Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja. |
spellingShingle |
Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja. Arantes, Suelen Oliveira Glycine max Diversidade Genética Correlação Ganho de Seleção Genetic Diversity Correlation Selection Gain CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL Genética ODS::ODS 2. Fome zero e agricultura sustentável - Acabar com a fome, alcançar a segurança alimentar e melhoria da nutrição e promover a agricultura sustentável. |
title_short |
Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja. |
title_full |
Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja. |
title_fullStr |
Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja. |
title_full_unstemmed |
Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja. |
title_sort |
Estimativas de parâmetros genéticos e fenotípicos, correlações e diversidade genética em progênies F3 e F4 de soja. |
author |
Arantes, Suelen Oliveira |
author_facet |
Arantes, Suelen Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dias, Polianna Alves Silva http://lattes.cnpq.br/6663773085460018 Nogueira, Ana Paula Oliveira http://lattes.cnpq.br/0999266992389089 Hamawaki, Osvaldo Toshiyuki http://lattes.cnpq.br/9968435526825444 Silveira, Gustavo da http://lattes.cnpq.br/1450629575665230 |
dc.contributor.author.fl_str_mv |
Arantes, Suelen Oliveira |
dc.subject.por.fl_str_mv |
Glycine max Diversidade Genética Correlação Ganho de Seleção Genetic Diversity Correlation Selection Gain CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL Genética ODS::ODS 2. Fome zero e agricultura sustentável - Acabar com a fome, alcançar a segurança alimentar e melhoria da nutrição e promover a agricultura sustentável. |
topic |
Glycine max Diversidade Genética Correlação Ganho de Seleção Genetic Diversity Correlation Selection Gain CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL Genética ODS::ODS 2. Fome zero e agricultura sustentável - Acabar com a fome, alcançar a segurança alimentar e melhoria da nutrição e promover a agricultura sustentável. |
description |
In the global market for agricultural commodities, soybean [Glycine max (L.) Merrill] is the main oilseed crop grown in the world. In the 2019/2020 season, Brazil became the world's largest producer and exporter of grains of this species. The study of genetic diversity is a predictive way to choose parents, and obtaining estimates of genetic parameters allows breeders to analyze selection strategies and predict selection gains, consequently helping to identify and select superior genotypes. Thus, the objective of this study was to identify groups of soybean genotypes based on characters from the vegetative stage, in order to select parents for artificial hybridization in soybean and to indicate the relative contribution of the evaluated characters to genetic dissimilarity; estimate genetic and phenotypic parameters, evaluate the association between agronomic traits via phenotypic and genotypic correlations, analyze selection strategies via direct selection and selection indices, and select superior progenies. The experiment was conducted in the field at the Capim Branco experimental farm belonging to the Federal University of Uberlândia (UFU), in a randomized complete block design (RCB), with three replications. Six phenotypic characters were evaluated during the vegetative phase (V2) of the crop: hypocotyl length (CH), epicotyl length (CE), first internode length (CI), unifoliate leaf petiole length (CPFU), petiole length of the first trifoliate leaf (CPFT), plant height at vegetative stage (APV), and twelve agronomic characters: number of days to flowering (NDF), plant height at flowering (APF), number of nodes on the main stem at flowering (NNF), number of days to maturity (NDM), plant height at maturity (APM), number of nodes on the main stem at maturity (NNM), number of productive nodes at maturity (NNPM), number of pods per plant (NVP), first pod insertion height (AIV), lodging (ACM), grain yield per plant (PGP), grain yield in kg ha-1 (PROD). The data obtained at the V2 stage were analyzed using the GENES software, and the genetic diversity among the progenies was estimated using the methods: Tocher optimization, UPGMA and canonical variables. The agronomic traits were evaluated with the aid of the R software, via the mixed models approach (REML/BLUP), in which the genetic and phenotypic parameters, phenotypic and genotypic correlations, selection indices, gain from direct selection, indirectly and through selection indices (Classic, Sum of “Ranks” - M&M and Sum of “Ranks” with no definition of economic weights - M&M2). The PMGS_UFU081 and PMGS_UFU103 genotypes show greater genetic dissimilarity in relation to the others, and PMGS_UFU100 and PMGS_UFU104 are very similar genotypes. On the other hand, the PMGS_UFU081 and PMGS_UFU103 genotypes are quite different from the others, proving to be important genetic resources to explore maximum heterosis in future crosses. Despite the methods of Tocher, UPGMA and Canonical Variables not corroborating the groupings, they are efficient to represent the genetic diversity, with CE being the characteristic that most contributes to the study of genetic diversity in soybean germplasm in the vegetative phase. For the agronomic traits, the existence of genetic variability was detected by the likelihood test, at levels of 0, 01% and 0,001% for all analyzed traits and the heritability estimates ranged from 0,48 to 0,96, evidencing favorable conditions for the selection process. The PGP character presents a positive and high magnitude correlation with the NNM, NNPM and NVP characters, indicating that the selection on these characters can indirectly contribute to the increase of PGP. NDM also showed a positive correlation of high magnitude with the characters NNM, NNPM and NVP, indicating that selection aiming at precocity (reducing NDM) can cause decreases in the average of these characters. The index of the sum of "ranks" with the non-definition of economic weights proves to be the best selection strategy, and the progenies selected by this index were chosen to advance in the breeding program, which are: PMGS_UFU004, PMGS_UFU007, PMGS_UFU009, PMGS_UFU011, PMGS_UFU017, PMGS_UFU 018, PMGS_UFU019, PMGS_UFU021, PMGS_UFU022, PMGS_UFU025, PMGS_ UFU028, PMGS_UFU029, PMGS_UFU076, PMGS_UFU094. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-30 2024-01-26T14:09:00Z 2024-01-26T14:09:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ARANTES, Suelen Oliveira. Estimativas de parâmetros genéticos e fenotípicos, correlações, e diversidade genética em progênies F3 e F4 de soja. 2022. 95 f. Dissertação (Mestrado em Genética e Bioquímica) - Universidade Federal de Uberlândia, 2024. DOI http://doi.org/10.14393/ufu.di.2023.8064. https://repositorio.ufu.br/handle/123456789/41051 http://doi.org/10.14393/ufu.di.2023.8064 |
identifier_str_mv |
ARANTES, Suelen Oliveira. Estimativas de parâmetros genéticos e fenotípicos, correlações, e diversidade genética em progênies F3 e F4 de soja. 2022. 95 f. Dissertação (Mestrado em Genética e Bioquímica) - Universidade Federal de Uberlândia, 2024. DOI http://doi.org/10.14393/ufu.di.2023.8064. |
url |
https://repositorio.ufu.br/handle/123456789/41051 http://doi.org/10.14393/ufu.di.2023.8064 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Genética e Bioquímica |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Genética e Bioquímica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711524065181696 |