Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a doença de Parkinson
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/39009 http://doi.org/10.14393/ufu.di.2023.455 |
Resumo: | Introduction and Literature Review: Parkinson's Disease (PD) is a neurological condition that impacts mobility, affecting millions of people. It presents both motor and non-motor signs and symptoms, with the four cardinal features being tremor, bradykinesia, postural instability, and rigidity, which is the focus of this study. Diagnosis is made through clinical analysis if the patient exhibits at least two of these signs and symptoms, with the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) serving as the gold standard, albeit a subjective method. Physiotherapeutic processes have shown validity in treating PD symptoms, often employing robotic technologies. Notable among these are inertial measurement units (IMU), elastography, myotonometry, and servo motors. This present work aims to validate the use of an orthosis to assist in the objective quantification of rigidity in PD patients using force, current, and angular displacement data obtained from a linear motor, thus potentially aiding the field of physiotherapy, particularly in the context of treatment and monitoring of the pathology. Methodology: The orthosis used was developed at the Center for Innovation and Technological Evaluation in Health (NIATS) and is electronically composed of the linear motor LM 2070-080-11 and the microcontroller MCLM 3006 S RS (Faulhaber, Germany). The validation process focused on the current consumed by the actuator, the force exerted by it, and the angular displacement caused at the wrist. The Faulhaber Motion Manager software (providing the current consumed by the motor and the displacement of the rod) and RStudio were utilized. The manufacturer provides a force constant in the actuator's datasheet, but it was necessary to verify its validity. To calibrate the force exerted by the actuator, an experiment was proposed using various masses attached to the actuator by a pulley. This allowed calculating the weight force for each mass and comparing it with the force estimated based on the current consumed by the motor, thus creating a calibration curve between the real force and the estimated force, as well as calculating a new force constant. For the calibration of the wrist's angular displacement, the GP_10 goniometer and Myosystem-Br1 software were used. Two protocols were established: the first involved displacing the rod in increments of 1000, measuring the angular displacement for each position of the rod; the second protocol displaced the rod between its minimum and maximum positions, concurrently capturing data from the goniometer. This way, a calibration curve was created based on the displacement values of the rod and the values from the goniometer. Results: Regarding the calibration of the force exerted, the calculated force constant was 14.28 N/A, 18.49% higher than the manufacturer's provided value (11.64 N/A), with a Pearson correlation coefficient of 0.9997189. The minimum mass detected by the actuator was 39.07 grams, and the maximum mass it could support without yielding was 812.64 grams. As for the angular displacement, both methodologies showed linearity between the analyzed variables, with Pearson coefficients of 0.9995091 and 0.995259, respectively, with variations between the parameters of the calibration curves, reinforcing the validity of both methods. Conclusion: The statistical metrics obtained in the proposed methodologies reinforce the validity of the proposed models, even if occasional adjustments or improvements are necessary, making them significantly helpful in the field of physiotherapy. |
id |
UFU_74aa1a23729c7bde7e52cd64b7c1eca1 |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/39009 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a doença de ParkinsonValidation of a wrist orthosis instrumented for rigidity assessment in people with Parkinson's diseaseDoença de ParkinsonÓrteseQuantificação objetivaRigidezFisioterapiaParkinson's diseaseOrthosisObjective quantificationRigidityPhysiotherapyCNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICAEngenharia biomédicaIntroduction and Literature Review: Parkinson's Disease (PD) is a neurological condition that impacts mobility, affecting millions of people. It presents both motor and non-motor signs and symptoms, with the four cardinal features being tremor, bradykinesia, postural instability, and rigidity, which is the focus of this study. Diagnosis is made through clinical analysis if the patient exhibits at least two of these signs and symptoms, with the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) serving as the gold standard, albeit a subjective method. Physiotherapeutic processes have shown validity in treating PD symptoms, often employing robotic technologies. Notable among these are inertial measurement units (IMU), elastography, myotonometry, and servo motors. This present work aims to validate the use of an orthosis to assist in the objective quantification of rigidity in PD patients using force, current, and angular displacement data obtained from a linear motor, thus potentially aiding the field of physiotherapy, particularly in the context of treatment and monitoring of the pathology. Methodology: The orthosis used was developed at the Center for Innovation and Technological Evaluation in Health (NIATS) and is electronically composed of the linear motor LM 2070-080-11 and the microcontroller MCLM 3006 S RS (Faulhaber, Germany). The validation process focused on the current consumed by the actuator, the force exerted by it, and the angular displacement caused at the wrist. The Faulhaber Motion Manager software (providing the current consumed by the motor and the displacement of the rod) and RStudio were utilized. The manufacturer provides a force constant in the actuator's datasheet, but it was necessary to verify its validity. To calibrate the force exerted by the actuator, an experiment was proposed using various masses attached to the actuator by a pulley. This allowed calculating the weight force for each mass and comparing it with the force estimated based on the current consumed by the motor, thus creating a calibration curve between the real force and the estimated force, as well as calculating a new force constant. For the calibration of the wrist's angular displacement, the GP_10 goniometer and Myosystem-Br1 software were used. Two protocols were established: the first involved displacing the rod in increments of 1000, measuring the angular displacement for each position of the rod; the second protocol displaced the rod between its minimum and maximum positions, concurrently capturing data from the goniometer. This way, a calibration curve was created based on the displacement values of the rod and the values from the goniometer. Results: Regarding the calibration of the force exerted, the calculated force constant was 14.28 N/A, 18.49% higher than the manufacturer's provided value (11.64 N/A), with a Pearson correlation coefficient of 0.9997189. The minimum mass detected by the actuator was 39.07 grams, and the maximum mass it could support without yielding was 812.64 grams. As for the angular displacement, both methodologies showed linearity between the analyzed variables, with Pearson coefficients of 0.9995091 and 0.995259, respectively, with variations between the parameters of the calibration curves, reinforcing the validity of both methods. Conclusion: The statistical metrics obtained in the proposed methodologies reinforce the validity of the proposed models, even if occasional adjustments or improvements are necessary, making them significantly helpful in the field of physiotherapy.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)Introdução e Revisão Bibliográfica: A Doença de Parkinson (DP) é uma patologia neurológica que impacta a mobilidade, afetando milhões de pessoas. Ela apresenta sinais e sintomas não-motores e motores, sendo os quatro sinais e sintomas cardinais o tremor, a bradicinesia, a instabilidade postural e a rigidez, sendo este o foco deste trabalho. O diagnóstico é feito via análise clínica caso o paciente apresente ao menos dois desses sinais e sintomas, tendo como padrão ouro a Movement Disorder Society – Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), um método subjetivo. Processos fisioterapêuticos têm mostrado validade no tratamento dos sinais e sintomas da DP, podendo empregar tecnologias robóticas. Destacam-se, entre elas, unidades de medição inercial, elastografias, miotonometrias e servomotores. O presente trabalho busca validar o uso de uma órtese para auxiliar na quantificação objetiva da rigidez em pacientes com DP por meio de dados de força, corrente e deslocamento angular obtidos por meio de um motor linear, dessa forma podendo auxiliar no campo da fisioterapia, especialmente no que diz respeito ao tratamento e ao monitoramento da patologia. Metodologia: A órtese utilizada foi desenvolvida no Núcleo de Inovação e Avaliação Tecnológica em Saúde (NIATS) e é composta eletronicamente pelo motor linear LM 2070-080-11 e o microcontrolador MCLM 3006 S RS (Faulhaber, Alemanha). Buscou-se validar a corrente consumida pelo atuador, a força realizada por ele e o deslocamento angular causado no punho, sendo utilizados os softwares Faulhaber Motion Manager (que fornece a corrente consumida pelo motor e o deslocamento da haste) e RStudio. O fabricante fornece uma constante de força no datasheet do atuador, entretanto, era necessário verificar se tal constante era válida. Para calibrar a força exercida pelo atuador, foi proposto um experimento que fazia uso de diversas massas, presas ao atuador por uma polia. Dessa forma, foi possível calcular a força peso referente a cada massa e comparar com a força estimada com base na corrente consumida pelo motor, criando uma curva de calibração entre a força real e a força estimada, assim como o cálculo de uma nova constante de força. Para a calibração do deslocamento angular do punho, foi utilizado o goniômetro GP_10 e o software Myosystem-Br1. Foram estabelecidos dois protocolos: o primeiro deslocou a haste de 1000 em 1000 incrementos, sendo medido o deslocamento angular referente a cada posição da haste; o segundo protocolo deslocou a haste entre suas posições mínima e máxima, captando, concomitantemente, dados do goniômetro. Assim, foi feita uma curva de calibração com base nos valores de deslocamento da haste e os valores do goniômetro. Resultados: Referente à calibração da força exercida, a constante de força calculada foi 14,28 N/A, 18,49% maior que a fornecida pelo fabricante (11,64 N/A), com coeficiente de correlação de Pearson de 0,9997189. A massa mínima detectada pelo atuador foi 39,07 gramas e a máxima que ele suportou sem ceder, 812,64 gramas. Quanto ao deslocamento angular, ambas as metodologias apresentaram linearidade entre as variáveis analisadas, com coeficientes de Pearson de 0,9995091 e 0,995259, respectivamente, com variações entre os parâmetros das curvas de calibração, reforçando a validade de ambos os métodos. Conclusão: As métricas estatísticas obtidas nas metodologias propostas reforçam a validade dos modelos propostos, mesmo que eventuais ajustes ou aprimoramentos sejam necessários, sendo de relevante auxílio para a área fisioterapêutica.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia BiomédicaPereira, Adriano Alveshttp://lattes.cnpq.br/7340105957340705Pereira, Adriano Alveshttp://lattes.cnpq.br/7340105957340705Bernardes, Wellington Maycon Santoshttp://lattes.cnpq.br/8631549983581675Silva, Ana Paula Sousa Paixão Barrosohttp://lattes.cnpq.br/0837090691013997Ribeiro, Caio Tonus2023-08-29T19:25:42Z2023-08-29T19:25:42Z2023-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfRIBEIRO, Caio Tonus. Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a Doença de Parkinson. 2023. 70 f. Dissertação (Mestrado em Engenharia Biomédica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.di.2023.455.https://repositorio.ufu.br/handle/123456789/39009http://doi.org/10.14393/ufu.di.2023.455porhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2023-08-30T06:20:56Zoai:repositorio.ufu.br:123456789/39009Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2023-08-30T06:20:56Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a doença de Parkinson Validation of a wrist orthosis instrumented for rigidity assessment in people with Parkinson's disease |
title |
Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a doença de Parkinson |
spellingShingle |
Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a doença de Parkinson Ribeiro, Caio Tonus Doença de Parkinson Órtese Quantificação objetiva Rigidez Fisioterapia Parkinson's disease Orthosis Objective quantification Rigidity Physiotherapy CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA Engenharia biomédica |
title_short |
Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a doença de Parkinson |
title_full |
Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a doença de Parkinson |
title_fullStr |
Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a doença de Parkinson |
title_full_unstemmed |
Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a doença de Parkinson |
title_sort |
Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a doença de Parkinson |
author |
Ribeiro, Caio Tonus |
author_facet |
Ribeiro, Caio Tonus |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pereira, Adriano Alves http://lattes.cnpq.br/7340105957340705 Pereira, Adriano Alves http://lattes.cnpq.br/7340105957340705 Bernardes, Wellington Maycon Santos http://lattes.cnpq.br/8631549983581675 Silva, Ana Paula Sousa Paixão Barroso http://lattes.cnpq.br/0837090691013997 |
dc.contributor.author.fl_str_mv |
Ribeiro, Caio Tonus |
dc.subject.por.fl_str_mv |
Doença de Parkinson Órtese Quantificação objetiva Rigidez Fisioterapia Parkinson's disease Orthosis Objective quantification Rigidity Physiotherapy CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA Engenharia biomédica |
topic |
Doença de Parkinson Órtese Quantificação objetiva Rigidez Fisioterapia Parkinson's disease Orthosis Objective quantification Rigidity Physiotherapy CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA Engenharia biomédica |
description |
Introduction and Literature Review: Parkinson's Disease (PD) is a neurological condition that impacts mobility, affecting millions of people. It presents both motor and non-motor signs and symptoms, with the four cardinal features being tremor, bradykinesia, postural instability, and rigidity, which is the focus of this study. Diagnosis is made through clinical analysis if the patient exhibits at least two of these signs and symptoms, with the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) serving as the gold standard, albeit a subjective method. Physiotherapeutic processes have shown validity in treating PD symptoms, often employing robotic technologies. Notable among these are inertial measurement units (IMU), elastography, myotonometry, and servo motors. This present work aims to validate the use of an orthosis to assist in the objective quantification of rigidity in PD patients using force, current, and angular displacement data obtained from a linear motor, thus potentially aiding the field of physiotherapy, particularly in the context of treatment and monitoring of the pathology. Methodology: The orthosis used was developed at the Center for Innovation and Technological Evaluation in Health (NIATS) and is electronically composed of the linear motor LM 2070-080-11 and the microcontroller MCLM 3006 S RS (Faulhaber, Germany). The validation process focused on the current consumed by the actuator, the force exerted by it, and the angular displacement caused at the wrist. The Faulhaber Motion Manager software (providing the current consumed by the motor and the displacement of the rod) and RStudio were utilized. The manufacturer provides a force constant in the actuator's datasheet, but it was necessary to verify its validity. To calibrate the force exerted by the actuator, an experiment was proposed using various masses attached to the actuator by a pulley. This allowed calculating the weight force for each mass and comparing it with the force estimated based on the current consumed by the motor, thus creating a calibration curve between the real force and the estimated force, as well as calculating a new force constant. For the calibration of the wrist's angular displacement, the GP_10 goniometer and Myosystem-Br1 software were used. Two protocols were established: the first involved displacing the rod in increments of 1000, measuring the angular displacement for each position of the rod; the second protocol displaced the rod between its minimum and maximum positions, concurrently capturing data from the goniometer. This way, a calibration curve was created based on the displacement values of the rod and the values from the goniometer. Results: Regarding the calibration of the force exerted, the calculated force constant was 14.28 N/A, 18.49% higher than the manufacturer's provided value (11.64 N/A), with a Pearson correlation coefficient of 0.9997189. The minimum mass detected by the actuator was 39.07 grams, and the maximum mass it could support without yielding was 812.64 grams. As for the angular displacement, both methodologies showed linearity between the analyzed variables, with Pearson coefficients of 0.9995091 and 0.995259, respectively, with variations between the parameters of the calibration curves, reinforcing the validity of both methods. Conclusion: The statistical metrics obtained in the proposed methodologies reinforce the validity of the proposed models, even if occasional adjustments or improvements are necessary, making them significantly helpful in the field of physiotherapy. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-29T19:25:42Z 2023-08-29T19:25:42Z 2023-07-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
RIBEIRO, Caio Tonus. Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a Doença de Parkinson. 2023. 70 f. Dissertação (Mestrado em Engenharia Biomédica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.di.2023.455. https://repositorio.ufu.br/handle/123456789/39009 http://doi.org/10.14393/ufu.di.2023.455 |
identifier_str_mv |
RIBEIRO, Caio Tonus. Validação de uma órtese de punho instrumentada para avaliação da rigidez em pessoas com a Doença de Parkinson. 2023. 70 f. Dissertação (Mestrado em Engenharia Biomédica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.di.2023.455. |
url |
https://repositorio.ufu.br/handle/123456789/39009 http://doi.org/10.14393/ufu.di.2023.455 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Biomédica |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Biomédica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711363805020160 |