Análise de experimentos de germinação usando os modelos lineares generalizados

Detalhes bibliográficos
Autor(a) principal: Carvalho, Fábio Janoni
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/12237
http://doi.org/10.14393/ufu.di.2016.13
Resumo: CHAPTER II: Analysis of variance (ANOVA) is one of the most important statistical models applied in agronomic experiments, especially in the seeds area. Based on strong assumptions, it lasted for many years with the support of techniques such as data transformation. As ANOVA being a special case of Generalized Linear Models (GLM), a classic experiment of seeds germination of tree species Copaifera langsdorffii Desf. can show the mirroring between both methods of analysis, and this is one of the goals of this research. It also aimed to compare the quality of the adjustment and the efficiency of the models for the germination, expressed in percentage with Normal distribution and number of germinated seeds with Binomial distribution. To meet these objectives, seeds of C. langsdorffii were arranged in a completely randomized design with four replications of 25 seeds in a 4 x 3 factorial scheme, in which the first factor refers to the methods to overcome dormancy (M1, M2, M3 and M4) and the second effect is related to samples (A1, A2 and A3). For the results expressed in percentage of germination, the assumptions of normality and independence of residuals and homoscedasticity were tested by Shapiro-Wilk, Durbin-Watson and Levene, respectively. Then, it was applied an ANOVA model, as well as GLM with Normal distribution and identity link function. About the data expressed as number of germinated seeds, GLM was performed with Binomial distribution and logistics link function. For both distributions, the quality of the adjustment was determined by Akaike information criterion (AIC) and Bayesian information criterion (BIC), Cook s distance and q-q plot analysis. As expected, ANOVA model was equal to GLM with Normal distribution for the percentage of copaiba seed germination, and they indicated a significant effect of sample and interaction, as a previous analysis confirmed that all assumptions of the model were held. The GLM with Binomial distribution had the same significance of the effects as the Normal GLM. However, AIC and BIC indicated that Binomial model was better adjusted to data, and the accommodation of values to the simulated envelope with 95% confidence was greater. Cook s distance did not discriminate the models, since they approached to the same amount of influential points. CHAPTER III: Seed germination experiments are constantly analyzed using ANOVA, but it is also faced the problem of not holding the assumptions; when these ones are violated, the reliability of all parametric tests is compromised. To solve this problem, some authors suggest angular transformation of the data, as in many other cases the use of this technique with no care. Another suggested alternative, with less impact to the data, is the application of statistics methodologies that do not need to answer these assumptions. Among the existing methodologies, Generalized Linear Models (GLM) stands out. Despite the common representation of the number of germinated seeds in percentage, the original nature of data is discrete and follows all the criteria of Binomial distribution. Thus, GLM emerge as an alternative to solve ANOVA restrictions and to bring different statistical techniques, allowing a better data processing. GLM are poorly known in agronomy, and there are not works to the seed analysis that investigate the applicability and the adjustment of this technique, comparing to ANOVA and data transformation. In this way, the objective of this study was to compare the GLM methodology with ANOVA by checking the impact caused by them within seed germination variable. It was also aimed to apply the data transformation and compares it to GLM, checking which the best one for the studied data is. Statistical analysis focused on the characteristic of normal seedlings obtained from the process of validation of methods for germination test of 50 forest species seeds. ANOVA is a part of GLM, and its incorporation was made assuming the Normal distribution of random component and the identity link function. The number of normal seedlings followed a Binomial distribution, corresponding to the event of success with a logistic link function for this GLM. Only 41% of species that hold the assumptions and 22% of those which did not had the same interpretation about the effects of the factors, which proves that the analysis change within GLM was radical even for species that attended the assumptions. Registrations of AIC can conclude that the Binomial model with logit function was more harmonious for the data set and have fewer parameters to explain the variation, which made it a more parsimonious model. Normal plots graphics allude to a better linearity of the residuals from Binomial distribution data. The angular transformation was able to correct the problems in a completely meeting the assumptions in only ten species, in relation to the 23 that were studied. It proves that the application of GLM with an immediately Binomial distribution was essential for 13 of them.
id UFU_97abf58402f615bfc8545bbef6ed43c7
oai_identifier_str oai:repositorio.ufu.br:123456789/12237
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Análise de experimentos de germinação usando os modelos lineares generalizadosCopaíbaCritério de informação de Akaike (AIC)Critério de informação Bayesiano (BIC)Espécie florestalPressuposições da ANOVAMLGBinomialQ-q plotsValidaçãoSementes - GerminaçãoModelos lineares (Estatística)Akaike s information criterion (AIC)Bayesian s information criterion (BIC)Forest speciesANOVA assumptionsGLMValidationCNPQ::CIENCIAS AGRARIAS::AGRONOMIACHAPTER II: Analysis of variance (ANOVA) is one of the most important statistical models applied in agronomic experiments, especially in the seeds area. Based on strong assumptions, it lasted for many years with the support of techniques such as data transformation. As ANOVA being a special case of Generalized Linear Models (GLM), a classic experiment of seeds germination of tree species Copaifera langsdorffii Desf. can show the mirroring between both methods of analysis, and this is one of the goals of this research. It also aimed to compare the quality of the adjustment and the efficiency of the models for the germination, expressed in percentage with Normal distribution and number of germinated seeds with Binomial distribution. To meet these objectives, seeds of C. langsdorffii were arranged in a completely randomized design with four replications of 25 seeds in a 4 x 3 factorial scheme, in which the first factor refers to the methods to overcome dormancy (M1, M2, M3 and M4) and the second effect is related to samples (A1, A2 and A3). For the results expressed in percentage of germination, the assumptions of normality and independence of residuals and homoscedasticity were tested by Shapiro-Wilk, Durbin-Watson and Levene, respectively. Then, it was applied an ANOVA model, as well as GLM with Normal distribution and identity link function. About the data expressed as number of germinated seeds, GLM was performed with Binomial distribution and logistics link function. For both distributions, the quality of the adjustment was determined by Akaike information criterion (AIC) and Bayesian information criterion (BIC), Cook s distance and q-q plot analysis. As expected, ANOVA model was equal to GLM with Normal distribution for the percentage of copaiba seed germination, and they indicated a significant effect of sample and interaction, as a previous analysis confirmed that all assumptions of the model were held. The GLM with Binomial distribution had the same significance of the effects as the Normal GLM. However, AIC and BIC indicated that Binomial model was better adjusted to data, and the accommodation of values to the simulated envelope with 95% confidence was greater. Cook s distance did not discriminate the models, since they approached to the same amount of influential points. CHAPTER III: Seed germination experiments are constantly analyzed using ANOVA, but it is also faced the problem of not holding the assumptions; when these ones are violated, the reliability of all parametric tests is compromised. To solve this problem, some authors suggest angular transformation of the data, as in many other cases the use of this technique with no care. Another suggested alternative, with less impact to the data, is the application of statistics methodologies that do not need to answer these assumptions. Among the existing methodologies, Generalized Linear Models (GLM) stands out. Despite the common representation of the number of germinated seeds in percentage, the original nature of data is discrete and follows all the criteria of Binomial distribution. Thus, GLM emerge as an alternative to solve ANOVA restrictions and to bring different statistical techniques, allowing a better data processing. GLM are poorly known in agronomy, and there are not works to the seed analysis that investigate the applicability and the adjustment of this technique, comparing to ANOVA and data transformation. In this way, the objective of this study was to compare the GLM methodology with ANOVA by checking the impact caused by them within seed germination variable. It was also aimed to apply the data transformation and compares it to GLM, checking which the best one for the studied data is. Statistical analysis focused on the characteristic of normal seedlings obtained from the process of validation of methods for germination test of 50 forest species seeds. ANOVA is a part of GLM, and its incorporation was made assuming the Normal distribution of random component and the identity link function. The number of normal seedlings followed a Binomial distribution, corresponding to the event of success with a logistic link function for this GLM. Only 41% of species that hold the assumptions and 22% of those which did not had the same interpretation about the effects of the factors, which proves that the analysis change within GLM was radical even for species that attended the assumptions. Registrations of AIC can conclude that the Binomial model with logit function was more harmonious for the data set and have fewer parameters to explain the variation, which made it a more parsimonious model. Normal plots graphics allude to a better linearity of the residuals from Binomial distribution data. The angular transformation was able to correct the problems in a completely meeting the assumptions in only ten species, in relation to the 23 that were studied. It proves that the application of GLM with an immediately Binomial distribution was essential for 13 of them.Mestre em AgronomiaCAPÍTULO II: A análise de variância (ANOVA) é um dos principais modelos estatísticos aplicados em experimentos agronômicos, especialmente na área de sementes. Fundamentada em rígidas pressuposições, ela ainda perdura com o auxílio de técnicas como a transformação de dados. Por ser a ANOVA uma particularização dos Modelos Lineares Generalizados (MLG), um experimento clássico de germinação envolvendo sementes da espécie florestal Copaifera langsdorffii Desf. mostrará o espelhamento entre ambos os métodos de análise, e esse é um dos objetivos dessa pesquisa. Visou-se também comparar a qualidade do ajuste e a eficiência dos modelos para a germinação das sementes expressa em porcentagem com distribuição Normal e em número de sementes germinadas com distribuição Normal. Para atender a esses objetivos, sementes de C. langsdorffii foram arranjadas em delineamento inteiramente casualizado (DIC) com quatro repetições de 25 sementes em um esquema fatorial 4 x 3, sendo o primeiro fator relativo aos métodos para superação de dormência (M1, M2, M3 e M4) e o segundo, referente às amostras (A1, A2 e A3). Nos resultados expressos em porcentagem de germinação foram testadas as pressuposições da normalidade e independência dos resíduos e homocedasticidade por Shapiro-Wilk, Durbin-Watson e Levene, respectivamente. Aplicou-se o modelo de ANOVA para o experimento em esquema fatorial e DIC, assim como o MLG para distribuição Normal e função de ligação identidade. No que tange aos dados expressos em número de sementes germinadas, foi aplicado o MLG para distribuição Binomial e função de ligação logística. Para ambas as distribuições, a qualidade do ajuste foi determinada pelos critérios de informação de Akaike (AIC) e Bayesiano (BIC), distância de Cook e análise de q-q plot . Como esperado, para a porcentagem de germinação de sementes de copaíba, o modelo da ANOVA se igualou ao MLG para distribuição Normal, e eles indicaram efeito significativo para amostra e interação, sendo que uma análise prévia comprovou o atendimento a todas as pressuposições do modelo. Resultados similares apontaram para o MLG com distribuição Binomial, com significância para os mesmos efeitos do modelo Normal. Contudo, AIC e BIC indicaram que o modelo Binomial obteve melhor ajuste aos dados, assim como ocorreu maior acomodação dos valores no envelope simulado, com 95% de confiança. A distância de Cook não distinguiu os modelos, uma vez que eles se aproximaram em relação à quantidade de pontos influentes. CAPITULO III: Experimentos de germinação de sementes são constantemente analisados por meio da ANOVA, mas também se deparam com o não atendimento às pressuposições que, ao serem violadas, tem comprometida a confiabilidade de todos os testes paramétricos. Para solucionar essa problemática, alguns autores sugerem a transformação angular dos dados, ao passo que outros retratam o uso dessa técnica sem nenhum cuidado. Outra alternativa sugerida, de menor impacto aos dados, é a aplicação de metodologias estatísticas que não necessitam do atendimento a essas pressuposições. Dentre as metodologias existentes se destacam os Modelos Lineares Generalizados (MLG). Apesar da comum representação do número de sementes germinadas em porcentagem, a natureza original do dado é discreta e segue todos os critérios da distribuição Binomial. Assim, os MLG surgem como uma alternativa para solucionar as restrições da ANOVA e trazem diferentes técnicas estatísticas, permitindo melhor tratamento aos dados. Na área agronômica, os MLG ainda são pouco conhecidos, sendo que, para a análise de sementes, não há trabalhos que investiguem a aplicabilidade e o ajuste dessa técnica, em comparação à ANOVA e à transformação de dados. Nesse sentido, o objetivo deste trabalho foi comparar a metodologia dos MLG com a da ANOVA, verificando os impactos ocasionados por elas dentro da variável de germinação de sementes. Visou-se, ainda, aplicar a transformação de dados e compará-la aos MLG, constatando a melhor alternativa para os dados estudados. As análises estatísticas se concentraram na característica das plântulas normais obtidas a partir do processo de validação de métodos para teste de germinação de sementes de 50 espécies florestais. A ANOVA faz parte dos MLG, e sua incorporação foi realizada assumindo a distribuição Normal do componente aleatório e a função de ligação identidade. O número de plântulas normais formadas seguiu a distribuição Binomial, correspondendo ao evento de sucesso com a função de ligação logística nesse MLG. Apenas 41% das espécies com pressuposições atendidas e 22% daquelas não atendidas obtiveram a mesma interpretação sobre o efeito dos fatores, o que demonstra que a mudança da análise dentro dos MLG foi radical até para espécies com pressuposições atendidas. Os registros dos valores de AIC permitem concluir que o modelo Binomial com função logit foi mais harmônico para o ajuste de dados e tem um menor número de parâmetros na explicação da variação, o que o tornou um modelo mais parcimonioso. Os gráficos Normal plots aludiram a uma linearidade melhor dos resíduos provenientes dos dados da distribuição Binomial. A transformação angular foi capaz de corrigir os problemas no atendimento às pressuposições por completo em apenas dez espécies, em relação às 23 estudadas. Isso comprova que a aplicação do MLG com distribuição Binomial de imediato foi indispensável para 13 delas.Universidade Federal de UberlândiaBRPrograma de Pós-graduação em AgronomiaCiências AgráriasUFUSantana, Denise Garcia dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784432E6Maciel, Gabriel Mascarenhashttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4778987J2Tavares, Marcelohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784538A3Veroneze, Renatahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4282478Y6Carvalho, Fábio Janoni2016-06-22T18:31:09Z2016-04-262016-06-22T18:31:09Z2016-01-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfCARVALHO, Fábio Janoni. Análise de experimentos de germinação usando os modelos lineares generalizados. 2016. 106 f. Dissertação (Mestrado em Ciências Agrárias) - Universidade Federal de Uberlândia, Uberlândia, 2016. DOI http://doi.org/10.14393/ufu.di.2016.13https://repositorio.ufu.br/handle/123456789/12237http://doi.org/10.14393/ufu.di.2016.13porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2020-09-21T22:41:05Zoai:repositorio.ufu.br:123456789/12237Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2020-09-21T22:41:05Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Análise de experimentos de germinação usando os modelos lineares generalizados
title Análise de experimentos de germinação usando os modelos lineares generalizados
spellingShingle Análise de experimentos de germinação usando os modelos lineares generalizados
Carvalho, Fábio Janoni
Copaíba
Critério de informação de Akaike (AIC)
Critério de informação Bayesiano (BIC)
Espécie florestal
Pressuposições da ANOVA
MLG
Binomial
Q-q plots
Validação
Sementes - Germinação
Modelos lineares (Estatística)
Akaike s information criterion (AIC)
Bayesian s information criterion (BIC)
Forest species
ANOVA assumptions
GLM
Validation
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Análise de experimentos de germinação usando os modelos lineares generalizados
title_full Análise de experimentos de germinação usando os modelos lineares generalizados
title_fullStr Análise de experimentos de germinação usando os modelos lineares generalizados
title_full_unstemmed Análise de experimentos de germinação usando os modelos lineares generalizados
title_sort Análise de experimentos de germinação usando os modelos lineares generalizados
author Carvalho, Fábio Janoni
author_facet Carvalho, Fábio Janoni
author_role author
dc.contributor.none.fl_str_mv Santana, Denise Garcia de
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784432E6
Maciel, Gabriel Mascarenhas
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4778987J2
Tavares, Marcelo
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784538A3
Veroneze, Renata
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4282478Y6
dc.contributor.author.fl_str_mv Carvalho, Fábio Janoni
dc.subject.por.fl_str_mv Copaíba
Critério de informação de Akaike (AIC)
Critério de informação Bayesiano (BIC)
Espécie florestal
Pressuposições da ANOVA
MLG
Binomial
Q-q plots
Validação
Sementes - Germinação
Modelos lineares (Estatística)
Akaike s information criterion (AIC)
Bayesian s information criterion (BIC)
Forest species
ANOVA assumptions
GLM
Validation
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
topic Copaíba
Critério de informação de Akaike (AIC)
Critério de informação Bayesiano (BIC)
Espécie florestal
Pressuposições da ANOVA
MLG
Binomial
Q-q plots
Validação
Sementes - Germinação
Modelos lineares (Estatística)
Akaike s information criterion (AIC)
Bayesian s information criterion (BIC)
Forest species
ANOVA assumptions
GLM
Validation
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description CHAPTER II: Analysis of variance (ANOVA) is one of the most important statistical models applied in agronomic experiments, especially in the seeds area. Based on strong assumptions, it lasted for many years with the support of techniques such as data transformation. As ANOVA being a special case of Generalized Linear Models (GLM), a classic experiment of seeds germination of tree species Copaifera langsdorffii Desf. can show the mirroring between both methods of analysis, and this is one of the goals of this research. It also aimed to compare the quality of the adjustment and the efficiency of the models for the germination, expressed in percentage with Normal distribution and number of germinated seeds with Binomial distribution. To meet these objectives, seeds of C. langsdorffii were arranged in a completely randomized design with four replications of 25 seeds in a 4 x 3 factorial scheme, in which the first factor refers to the methods to overcome dormancy (M1, M2, M3 and M4) and the second effect is related to samples (A1, A2 and A3). For the results expressed in percentage of germination, the assumptions of normality and independence of residuals and homoscedasticity were tested by Shapiro-Wilk, Durbin-Watson and Levene, respectively. Then, it was applied an ANOVA model, as well as GLM with Normal distribution and identity link function. About the data expressed as number of germinated seeds, GLM was performed with Binomial distribution and logistics link function. For both distributions, the quality of the adjustment was determined by Akaike information criterion (AIC) and Bayesian information criterion (BIC), Cook s distance and q-q plot analysis. As expected, ANOVA model was equal to GLM with Normal distribution for the percentage of copaiba seed germination, and they indicated a significant effect of sample and interaction, as a previous analysis confirmed that all assumptions of the model were held. The GLM with Binomial distribution had the same significance of the effects as the Normal GLM. However, AIC and BIC indicated that Binomial model was better adjusted to data, and the accommodation of values to the simulated envelope with 95% confidence was greater. Cook s distance did not discriminate the models, since they approached to the same amount of influential points. CHAPTER III: Seed germination experiments are constantly analyzed using ANOVA, but it is also faced the problem of not holding the assumptions; when these ones are violated, the reliability of all parametric tests is compromised. To solve this problem, some authors suggest angular transformation of the data, as in many other cases the use of this technique with no care. Another suggested alternative, with less impact to the data, is the application of statistics methodologies that do not need to answer these assumptions. Among the existing methodologies, Generalized Linear Models (GLM) stands out. Despite the common representation of the number of germinated seeds in percentage, the original nature of data is discrete and follows all the criteria of Binomial distribution. Thus, GLM emerge as an alternative to solve ANOVA restrictions and to bring different statistical techniques, allowing a better data processing. GLM are poorly known in agronomy, and there are not works to the seed analysis that investigate the applicability and the adjustment of this technique, comparing to ANOVA and data transformation. In this way, the objective of this study was to compare the GLM methodology with ANOVA by checking the impact caused by them within seed germination variable. It was also aimed to apply the data transformation and compares it to GLM, checking which the best one for the studied data is. Statistical analysis focused on the characteristic of normal seedlings obtained from the process of validation of methods for germination test of 50 forest species seeds. ANOVA is a part of GLM, and its incorporation was made assuming the Normal distribution of random component and the identity link function. The number of normal seedlings followed a Binomial distribution, corresponding to the event of success with a logistic link function for this GLM. Only 41% of species that hold the assumptions and 22% of those which did not had the same interpretation about the effects of the factors, which proves that the analysis change within GLM was radical even for species that attended the assumptions. Registrations of AIC can conclude that the Binomial model with logit function was more harmonious for the data set and have fewer parameters to explain the variation, which made it a more parsimonious model. Normal plots graphics allude to a better linearity of the residuals from Binomial distribution data. The angular transformation was able to correct the problems in a completely meeting the assumptions in only ten species, in relation to the 23 that were studied. It proves that the application of GLM with an immediately Binomial distribution was essential for 13 of them.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-22T18:31:09Z
2016-04-26
2016-06-22T18:31:09Z
2016-01-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CARVALHO, Fábio Janoni. Análise de experimentos de germinação usando os modelos lineares generalizados. 2016. 106 f. Dissertação (Mestrado em Ciências Agrárias) - Universidade Federal de Uberlândia, Uberlândia, 2016. DOI http://doi.org/10.14393/ufu.di.2016.13
https://repositorio.ufu.br/handle/123456789/12237
http://doi.org/10.14393/ufu.di.2016.13
identifier_str_mv CARVALHO, Fábio Janoni. Análise de experimentos de germinação usando os modelos lineares generalizados. 2016. 106 f. Dissertação (Mestrado em Ciências Agrárias) - Universidade Federal de Uberlândia, Uberlândia, 2016. DOI http://doi.org/10.14393/ufu.di.2016.13
url https://repositorio.ufu.br/handle/123456789/12237
http://doi.org/10.14393/ufu.di.2016.13
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Agronomia
Ciências Agrárias
UFU
publisher.none.fl_str_mv Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Agronomia
Ciências Agrárias
UFU
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711518637752320