On the effect of vibrotactile stimulation in Essential Tremor

Detalhes bibliográficos
Autor(a) principal: Cabral, Ariana Moura
Data de Publicação: 2023
Tipo de documento: Trabalho de conclusão de curso
Idioma: eng
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/38168
Resumo: Motivation: Essential Tremor (ET) is a neurological disease characterized by tremors of hands that causes motor dysfunction, interfering with activities of daily living and compromising quality of life. It is most common in individuals over the age of 65, with a prevalence of around 4.5%. However, ET can affect anyone at any age. Despite available treatments to manage tremor, ET still has no cure. This is because there is no understanding of its origin. In addition, the mechanisms behind the generation and manifestation of tremor, as well as the effect of external inputs on these mechanisms, are unclear. Studies have been conducted on the effect of external stimuli, such as inertial loads and electrical stimuli, on the motor behaviour of individuals affected by tremor. However, there is few evidence on vibrotactile stimulation. Objective: In this context, this study aimed to evaluate the effect of peripheral vibrotactile stimulation on the dynamics of postural tremor in individuals with ET. Methods: For this purpose, the involuntary movements of 18 individuals with ET were analysed during the maintenance of posture in the absence of vibrotactile stimulation and presence of four different patterns of vibratory stimulus. The simulus were applied to the fingertips, palm of the hand and forearm, using piezoelectric actuators. The involuntary movements were recorded by two inertial measurement units positioned in the hand and forearm of the limb most affected by the condition. Two types of analysis were designed, one in the time domain (focused on changes in amplitude and regularity of tremor before, during and after stimulation) and the other in the frequency domain (focused on changes in power spectral density of the tremor with and without stimulation). Thus, different signal processing methods were proposed to describe the tremor in terms of amplitude, frequency and regularity (approximate entropy). Results: As a result, it was observed that the response to vibrotactile stimulation was different among individuals. When comparing the involuntary activity before and after stimulation, the stimulus at 250 Hz was the only one that caused a reduction in the amplitude of tremor, mainly in the hand (η² > 0.1, p-value < 0.05). However, in terms of regularity, the tremor became more unpredictable after stimulation of the limb at 250 Hz (η² > 0.1, p-value < 0.05), showing a small effect size only for the Y axis (η² = 0.012). For many individuals, stimulation at 250 Hz and random frequency reduced the peak power of tremor compared to the peak power when the limb was not stimulated (η² > 0.1, p-value < 0.05). In terms of frequency, it was also found that vibrotactile stimulation shifted the peak frequency, regardless of the stimulus pattern (η² > 0.12, p-value < 0.05). Conclusion: Therefore, vibrotactile stimulation is a potential way to change the dynamics of postural tremor and could be a useful clinical tool for more than only dampening tremor.
id UFU_a0d88c6cd54b66a3583862646346e1e5
oai_identifier_str oai:repositorio.ufu.br:123456789/38168
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling On the effect of vibrotactile stimulation in Essential TremorEssential tremorVibrotactile stimulationGyroscopeWaveletApproximate entropyFrequency analysisCNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICAMotivation: Essential Tremor (ET) is a neurological disease characterized by tremors of hands that causes motor dysfunction, interfering with activities of daily living and compromising quality of life. It is most common in individuals over the age of 65, with a prevalence of around 4.5%. However, ET can affect anyone at any age. Despite available treatments to manage tremor, ET still has no cure. This is because there is no understanding of its origin. In addition, the mechanisms behind the generation and manifestation of tremor, as well as the effect of external inputs on these mechanisms, are unclear. Studies have been conducted on the effect of external stimuli, such as inertial loads and electrical stimuli, on the motor behaviour of individuals affected by tremor. However, there is few evidence on vibrotactile stimulation. Objective: In this context, this study aimed to evaluate the effect of peripheral vibrotactile stimulation on the dynamics of postural tremor in individuals with ET. Methods: For this purpose, the involuntary movements of 18 individuals with ET were analysed during the maintenance of posture in the absence of vibrotactile stimulation and presence of four different patterns of vibratory stimulus. The simulus were applied to the fingertips, palm of the hand and forearm, using piezoelectric actuators. The involuntary movements were recorded by two inertial measurement units positioned in the hand and forearm of the limb most affected by the condition. Two types of analysis were designed, one in the time domain (focused on changes in amplitude and regularity of tremor before, during and after stimulation) and the other in the frequency domain (focused on changes in power spectral density of the tremor with and without stimulation). Thus, different signal processing methods were proposed to describe the tremor in terms of amplitude, frequency and regularity (approximate entropy). Results: As a result, it was observed that the response to vibrotactile stimulation was different among individuals. When comparing the involuntary activity before and after stimulation, the stimulus at 250 Hz was the only one that caused a reduction in the amplitude of tremor, mainly in the hand (η² > 0.1, p-value < 0.05). However, in terms of regularity, the tremor became more unpredictable after stimulation of the limb at 250 Hz (η² > 0.1, p-value < 0.05), showing a small effect size only for the Y axis (η² = 0.012). For many individuals, stimulation at 250 Hz and random frequency reduced the peak power of tremor compared to the peak power when the limb was not stimulated (η² > 0.1, p-value < 0.05). In terms of frequency, it was also found that vibrotactile stimulation shifted the peak frequency, regardless of the stimulus pattern (η² > 0.12, p-value < 0.05). Conclusion: Therefore, vibrotactile stimulation is a potential way to change the dynamics of postural tremor and could be a useful clinical tool for more than only dampening tremor.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoTrabalho de Conclusão de Curso (Graduação)Motivation: Essential Tremor (ET) is a neurological disease characterized by tremors of hands that causes motor dysfunction, interfering with activities of daily living and compromising quality of life. It is most common in individuals over the age of 65, with a prevalence of around 4.5%. However, ET can affect anyone at any age. Despite available treatments to manage tremor, ET still has no cure. This is because there is no understanding of its origin. In addition, the mechanisms behind the generation and manifestation of tremor, as well as the effect of external inputs on these mechanisms, are unclear. Studies have been conducted on the effect of external stimuli, such as inertial loads and electrical stimuli, on the motor behaviour of individuals affected by tremor. However, there is few evidence on vibrotactile stimulation. Objective: In this context, this study aimed to evaluate the effect of peripheral vibrotactile stimulation on the dynamics of postural tremor in individuals with ET. Methods: For this purpose, the involuntary movements of 18 individuals with ET were analysed during the maintenance of posture in the absence of vibrotactile stimulation and presence of four different patterns of vibratory stimulus. The simulus were applied to the fingertips, palm of the hand and forearm, using piezoelectric actuators. The involuntary movements were recorded by two inertial measurement units positioned in the hand and forearm of the limb most affected by the condition. Two types of analysis were designed, one in the time domain (focused on changes in amplitude and regularity of tremor before, during and after stimulation) and the other in the frequency domain (focused on changes in power spectral density of the tremor with and without stimulation). Thus, different signal processing methods were proposed to describe the tremor in terms of amplitude, frequency and regularity (approximate entropy). Results: As a result, it was observed that the response to vibrotactile stimulation was different among individuals. When comparing the involuntary activity before and after stimulation, the stimulus at 250 Hz was the only one that caused a reduction in the amplitude of tremor, mainly in the hand (η² > 0.1, p-value < 0.05). However, in terms of regularity, the tremor became more unpredictable after stimulation of the limb at 250 Hz (η² > 0.1, p-value < 0.05), showing a small effect size only for the Y axis (η² = 0.012). For many individuals, stimulation at 250 Hz and random frequency reduced the peak power of tremor compared to the peak power when the limb was not stimulated (η² > 0.1, p-value < 0.05). In terms of frequency, it was also found that vibrotactile stimulation shifted the peak frequency, regardless of the stimulus pattern (η² > 0.12, p-value < 0.05). Conclusion: Therefore, vibrotactile stimulation is a potential way to change the dynamics of postural tremor and could be a useful clinical tool for more than only dampening tremor.2025-06-13Universidade Federal de UberlândiaBrasilEngenharia BiomédicaAndrade, Adriano de Oliveirahttp://lattes.cnpq.br/1229329519982110Lima, Eduardo Rocon dehttp://lattes.cnpq.br/6623746131086816Pereira, Adriano Alveshttp://lattes.cnpq.br/7340105957340705Cabral, Ariana Moura2023-06-26T19:11:10Z2023-06-26T19:11:10Z2023-06-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfCABRAL, Ariana Moura. On the effect of vibrotactile stimulation in Essential Tremor. 2023. 121 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Biomédica) – Universidade Federal de Uberlândia, Uberlândia, 2023.https://repositorio.ufu.br/handle/123456789/38168engAttribution-NonCommercial-NoDerivs 3.0 United Stateshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2023-06-27T06:22:52Zoai:repositorio.ufu.br:123456789/38168Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2023-06-27T06:22:52Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv On the effect of vibrotactile stimulation in Essential Tremor
title On the effect of vibrotactile stimulation in Essential Tremor
spellingShingle On the effect of vibrotactile stimulation in Essential Tremor
Cabral, Ariana Moura
Essential tremor
Vibrotactile stimulation
Gyroscope
Wavelet
Approximate entropy
Frequency analysis
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA
title_short On the effect of vibrotactile stimulation in Essential Tremor
title_full On the effect of vibrotactile stimulation in Essential Tremor
title_fullStr On the effect of vibrotactile stimulation in Essential Tremor
title_full_unstemmed On the effect of vibrotactile stimulation in Essential Tremor
title_sort On the effect of vibrotactile stimulation in Essential Tremor
author Cabral, Ariana Moura
author_facet Cabral, Ariana Moura
author_role author
dc.contributor.none.fl_str_mv Andrade, Adriano de Oliveira
http://lattes.cnpq.br/1229329519982110
Lima, Eduardo Rocon de
http://lattes.cnpq.br/6623746131086816
Pereira, Adriano Alves
http://lattes.cnpq.br/7340105957340705
dc.contributor.author.fl_str_mv Cabral, Ariana Moura
dc.subject.por.fl_str_mv Essential tremor
Vibrotactile stimulation
Gyroscope
Wavelet
Approximate entropy
Frequency analysis
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA
topic Essential tremor
Vibrotactile stimulation
Gyroscope
Wavelet
Approximate entropy
Frequency analysis
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA
description Motivation: Essential Tremor (ET) is a neurological disease characterized by tremors of hands that causes motor dysfunction, interfering with activities of daily living and compromising quality of life. It is most common in individuals over the age of 65, with a prevalence of around 4.5%. However, ET can affect anyone at any age. Despite available treatments to manage tremor, ET still has no cure. This is because there is no understanding of its origin. In addition, the mechanisms behind the generation and manifestation of tremor, as well as the effect of external inputs on these mechanisms, are unclear. Studies have been conducted on the effect of external stimuli, such as inertial loads and electrical stimuli, on the motor behaviour of individuals affected by tremor. However, there is few evidence on vibrotactile stimulation. Objective: In this context, this study aimed to evaluate the effect of peripheral vibrotactile stimulation on the dynamics of postural tremor in individuals with ET. Methods: For this purpose, the involuntary movements of 18 individuals with ET were analysed during the maintenance of posture in the absence of vibrotactile stimulation and presence of four different patterns of vibratory stimulus. The simulus were applied to the fingertips, palm of the hand and forearm, using piezoelectric actuators. The involuntary movements were recorded by two inertial measurement units positioned in the hand and forearm of the limb most affected by the condition. Two types of analysis were designed, one in the time domain (focused on changes in amplitude and regularity of tremor before, during and after stimulation) and the other in the frequency domain (focused on changes in power spectral density of the tremor with and without stimulation). Thus, different signal processing methods were proposed to describe the tremor in terms of amplitude, frequency and regularity (approximate entropy). Results: As a result, it was observed that the response to vibrotactile stimulation was different among individuals. When comparing the involuntary activity before and after stimulation, the stimulus at 250 Hz was the only one that caused a reduction in the amplitude of tremor, mainly in the hand (η² > 0.1, p-value < 0.05). However, in terms of regularity, the tremor became more unpredictable after stimulation of the limb at 250 Hz (η² > 0.1, p-value < 0.05), showing a small effect size only for the Y axis (η² = 0.012). For many individuals, stimulation at 250 Hz and random frequency reduced the peak power of tremor compared to the peak power when the limb was not stimulated (η² > 0.1, p-value < 0.05). In terms of frequency, it was also found that vibrotactile stimulation shifted the peak frequency, regardless of the stimulus pattern (η² > 0.12, p-value < 0.05). Conclusion: Therefore, vibrotactile stimulation is a potential way to change the dynamics of postural tremor and could be a useful clinical tool for more than only dampening tremor.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-26T19:11:10Z
2023-06-26T19:11:10Z
2023-06-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CABRAL, Ariana Moura. On the effect of vibrotactile stimulation in Essential Tremor. 2023. 121 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Biomédica) – Universidade Federal de Uberlândia, Uberlândia, 2023.
https://repositorio.ufu.br/handle/123456789/38168
identifier_str_mv CABRAL, Ariana Moura. On the effect of vibrotactile stimulation in Essential Tremor. 2023. 121 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Biomédica) – Universidade Federal de Uberlândia, Uberlândia, 2023.
url https://repositorio.ufu.br/handle/123456789/38168
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 United States
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 United States
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Engenharia Biomédica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Engenharia Biomédica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711435387109376