Adjoint-based shape optimization applied to multiphase flows
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/39112 http://doi.org/10.14393/ufu.te.2023.477 |
Resumo: | The adjoint method in computational fluid dynamics (CFD) offers a computationally affordable optimization by efficiently calculating gradients of objective functions with respect to design parameters. It outperforms other methods in terms of computational cost and is widely used in sensitivity analysis. Traditional methods, such as finite difference, require a large number of simulations as the number of design parameters increases, limiting the scope of optimization. However, the adjoint method in CFD allows for gradient calculation of an objective function at the cost of one flow field computation, making it practically independent of the number of design parameters and providing a more flexible and robust optimization tool. The aim of this thesis is to advance knowledge and expertise in the utilization of the adjoint method, with a specific focus on flows inside pipe bends commonly encountered in problems involving multiphase flows with particle transport. The work encompasses validating implementations, optimizing fluid dynamics systems, addressing problems related to particles in optimized systems, and proposing a novel adjoint-based formulation for shape optimization applied to multiphase flows. The adjoint fluid dynamics equations are derived at the level of partial differential equations using the continuous adjoint approach. The frozen turbulence assumption is adopted, neglecting variations of the turbulence field with respect to the design parameters. Furthermore, a technique for mesh adaptation is employed to adjust the shape of the computational domain as it is optimized. Firstly, the adjoint method is applied in a shape optimization process to minimize the total pressure losses in three different pipe fittings. Secondly, gas-solid flows are simulated in both the original and optimized pipe fittings to compare the erosion wear caused by particle impacts on the walls. This investigation explores how single-phase flow optimization can also affect the particle problem, i.e., mitigate erosion. The results demonstrate substantial reductions in peak erosion as a consequence of minimizing total losses, which can potentially increase the service life of these systems. Finally, new adjoint equations are derived to account for the dispersed phase of multiphase flows, and the corresponding sensitivity derivatives are obtained to maximize the deposition efficiency of particles on bend walls. |
id |
UFU_a7eb9e5054d67a4000e031d91896822f |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/39112 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Adjoint-based shape optimization applied to multiphase flowsOtimização de forma baseada no método adjunto aplicada a escoamentos multifásicosmétodos adjuntosadjoint methodsotimização de formashape optimizationderivadas de sensibilidadesensitivity derivativesdinâmica de fluidos computacionalcomputational fluid dynamicsescoamentos multifásicosmultiphase flowsCNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTEEngenharia mecânicaFluidodinâmica computacionalEscoamento multifásicoOperadores auto-adjuntosThe adjoint method in computational fluid dynamics (CFD) offers a computationally affordable optimization by efficiently calculating gradients of objective functions with respect to design parameters. It outperforms other methods in terms of computational cost and is widely used in sensitivity analysis. Traditional methods, such as finite difference, require a large number of simulations as the number of design parameters increases, limiting the scope of optimization. However, the adjoint method in CFD allows for gradient calculation of an objective function at the cost of one flow field computation, making it practically independent of the number of design parameters and providing a more flexible and robust optimization tool. The aim of this thesis is to advance knowledge and expertise in the utilization of the adjoint method, with a specific focus on flows inside pipe bends commonly encountered in problems involving multiphase flows with particle transport. The work encompasses validating implementations, optimizing fluid dynamics systems, addressing problems related to particles in optimized systems, and proposing a novel adjoint-based formulation for shape optimization applied to multiphase flows. The adjoint fluid dynamics equations are derived at the level of partial differential equations using the continuous adjoint approach. The frozen turbulence assumption is adopted, neglecting variations of the turbulence field with respect to the design parameters. Furthermore, a technique for mesh adaptation is employed to adjust the shape of the computational domain as it is optimized. Firstly, the adjoint method is applied in a shape optimization process to minimize the total pressure losses in three different pipe fittings. Secondly, gas-solid flows are simulated in both the original and optimized pipe fittings to compare the erosion wear caused by particle impacts on the walls. This investigation explores how single-phase flow optimization can also affect the particle problem, i.e., mitigate erosion. The results demonstrate substantial reductions in peak erosion as a consequence of minimizing total losses, which can potentially increase the service life of these systems. Finally, new adjoint equations are derived to account for the dispersed phase of multiphase flows, and the corresponding sensitivity derivatives are obtained to maximize the deposition efficiency of particles on bend walls.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoTese (Doutorado)O método adjunto na dinâmica de fluidos computacional (CFD) proporciona uma otimização computacionalmente acessível, possibilitando que os gradientes das funções objetivo em relação aos parâmetros de projeto sejam calculados de forma eficiente. Ele supera outros métodos em termos de custo computacional e é amplamente utilizado em análise de sensibilidade. Métodos tradicionais, como diferenças finitas, exigem um grande número de simulações à medida que o número de parâmetros de projeto aumenta, limitando o escopo da otimização. No entanto, o método adjunto em CFD permite o cálculo do gradiente de uma função objetivo ao custo de um único cálculo do campo de escoamento, tornando-o praticamente independente do número de parâmetros de projeto, o que viabiliza uma ferramenta de otimização mais flexível e robusta. Sendo assim, o propósito desta tese é avançar no conhecimento e na experiência acerca da utilização do método adjunto, com foco específico em escoamentos em curvas de dutos comumente encontradas em problemas envolvendo escoamentos multifásicos com transporte de partículas. O trabalho inclui a validação de implementações, otimização de sistemas de dinâmica de fluidos, análise de problemas relacionados às partículas nos sistemas otimizados e proposição de uma nova formulação baseada no adjunto para otimização de forma aplicada a escoamentos multifásicos. As equações adjuntas de dinâmica de fluidos são derivadas a nível de equações diferenciais parciais usando a abordagem adjunta contínua. A hipótese de turbulência congelada é adotada, negligenciando variações do campo de turbulência em relação aos parâmetros de projeto. Além disso, uma técnica de adaptação de malha é empregada para ajustar a forma do domínio computacional à medida que é otimizada. Em primeiro lugar, o método adjunto é aplicado na otimização de forma para minimizar as perdas de pressão total em três diferentes curvas de dutos. Em segundo lugar, escoamentos gás-sólido são simulados nas curvas originais e otimizadas para comparar o desgaste erosivo causado pelo impacto das partículas nas paredes. Nessa investigação, explora-se como a otimização de um escoamento monofásico também pode afetar o problema relacionado às partículas, ou seja, mitigar a erosão. A partir dos resultados, reduções na taxa de erosão máxima como consequência da minimização das perdas totais são obtidas, o que pode aumentar potencialmente a vida útil desses sistemas. Por fim, novas equações adjuntas são desenvolvidas para considerar a fase dispersa dos escoamentos multifásicos, e as derivadas de sensibilidade correspondentes são deduzidas para maximizar a eficiência de deposição de partículas nas paredes de curvas.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia MecânicaSouza, Francisco José dehttp://lattes.cnpq.br/1257320066520278Duarte, Carlos Antonio Ribeirohttp://lattes.cnpq.br/3533635470069420Silveira Neto, Aristeu dahttp://lattes.cnpq.br/4650888739121183Lobato, Fran Sérgiohttp://lattes.cnpq.br/7640108116459444Meier, Henry Françahttp://lattes.cnpq.br/2594453880874755Santos, Jessica Guarato de Freitas2023-09-15T16:52:45Z2023-09-15T16:52:45Z2023-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSANTOS, Jessica Guarato de Freitas. Otimização de forma baseada no método adjunto aplicada a escoamentos multifásicos. 2023. 132 f. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.477https://repositorio.ufu.br/handle/123456789/39112http://doi.org/10.14393/ufu.te.2023.477enghttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-08-22T16:54:37Zoai:repositorio.ufu.br:123456789/39112Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-08-22T16:54:37Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Adjoint-based shape optimization applied to multiphase flows Otimização de forma baseada no método adjunto aplicada a escoamentos multifásicos |
title |
Adjoint-based shape optimization applied to multiphase flows |
spellingShingle |
Adjoint-based shape optimization applied to multiphase flows Santos, Jessica Guarato de Freitas métodos adjuntos adjoint methods otimização de forma shape optimization derivadas de sensibilidade sensitivity derivatives dinâmica de fluidos computacional computational fluid dynamics escoamentos multifásicos multiphase flows CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE Engenharia mecânica Fluidodinâmica computacional Escoamento multifásico Operadores auto-adjuntos |
title_short |
Adjoint-based shape optimization applied to multiphase flows |
title_full |
Adjoint-based shape optimization applied to multiphase flows |
title_fullStr |
Adjoint-based shape optimization applied to multiphase flows |
title_full_unstemmed |
Adjoint-based shape optimization applied to multiphase flows |
title_sort |
Adjoint-based shape optimization applied to multiphase flows |
author |
Santos, Jessica Guarato de Freitas |
author_facet |
Santos, Jessica Guarato de Freitas |
author_role |
author |
dc.contributor.none.fl_str_mv |
Souza, Francisco José de http://lattes.cnpq.br/1257320066520278 Duarte, Carlos Antonio Ribeiro http://lattes.cnpq.br/3533635470069420 Silveira Neto, Aristeu da http://lattes.cnpq.br/4650888739121183 Lobato, Fran Sérgio http://lattes.cnpq.br/7640108116459444 Meier, Henry França http://lattes.cnpq.br/2594453880874755 |
dc.contributor.author.fl_str_mv |
Santos, Jessica Guarato de Freitas |
dc.subject.por.fl_str_mv |
métodos adjuntos adjoint methods otimização de forma shape optimization derivadas de sensibilidade sensitivity derivatives dinâmica de fluidos computacional computational fluid dynamics escoamentos multifásicos multiphase flows CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE Engenharia mecânica Fluidodinâmica computacional Escoamento multifásico Operadores auto-adjuntos |
topic |
métodos adjuntos adjoint methods otimização de forma shape optimization derivadas de sensibilidade sensitivity derivatives dinâmica de fluidos computacional computational fluid dynamics escoamentos multifásicos multiphase flows CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE Engenharia mecânica Fluidodinâmica computacional Escoamento multifásico Operadores auto-adjuntos |
description |
The adjoint method in computational fluid dynamics (CFD) offers a computationally affordable optimization by efficiently calculating gradients of objective functions with respect to design parameters. It outperforms other methods in terms of computational cost and is widely used in sensitivity analysis. Traditional methods, such as finite difference, require a large number of simulations as the number of design parameters increases, limiting the scope of optimization. However, the adjoint method in CFD allows for gradient calculation of an objective function at the cost of one flow field computation, making it practically independent of the number of design parameters and providing a more flexible and robust optimization tool. The aim of this thesis is to advance knowledge and expertise in the utilization of the adjoint method, with a specific focus on flows inside pipe bends commonly encountered in problems involving multiphase flows with particle transport. The work encompasses validating implementations, optimizing fluid dynamics systems, addressing problems related to particles in optimized systems, and proposing a novel adjoint-based formulation for shape optimization applied to multiphase flows. The adjoint fluid dynamics equations are derived at the level of partial differential equations using the continuous adjoint approach. The frozen turbulence assumption is adopted, neglecting variations of the turbulence field with respect to the design parameters. Furthermore, a technique for mesh adaptation is employed to adjust the shape of the computational domain as it is optimized. Firstly, the adjoint method is applied in a shape optimization process to minimize the total pressure losses in three different pipe fittings. Secondly, gas-solid flows are simulated in both the original and optimized pipe fittings to compare the erosion wear caused by particle impacts on the walls. This investigation explores how single-phase flow optimization can also affect the particle problem, i.e., mitigate erosion. The results demonstrate substantial reductions in peak erosion as a consequence of minimizing total losses, which can potentially increase the service life of these systems. Finally, new adjoint equations are derived to account for the dispersed phase of multiphase flows, and the corresponding sensitivity derivatives are obtained to maximize the deposition efficiency of particles on bend walls. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-15T16:52:45Z 2023-09-15T16:52:45Z 2023-08-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SANTOS, Jessica Guarato de Freitas. Otimização de forma baseada no método adjunto aplicada a escoamentos multifásicos. 2023. 132 f. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.477 https://repositorio.ufu.br/handle/123456789/39112 http://doi.org/10.14393/ufu.te.2023.477 |
identifier_str_mv |
SANTOS, Jessica Guarato de Freitas. Otimização de forma baseada no método adjunto aplicada a escoamentos multifásicos. 2023. 132 f. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.477 |
url |
https://repositorio.ufu.br/handle/123456789/39112 http://doi.org/10.14393/ufu.te.2023.477 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Mecânica |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Mecânica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711294930354176 |