Adjoint-based shape optimization applied to multiphase flows

Detalhes bibliográficos
Autor(a) principal: Santos, Jessica Guarato de Freitas
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/39112
http://doi.org/10.14393/ufu.te.2023.477
Resumo: The adjoint method in computational fluid dynamics (CFD) offers a computationally affordable optimization by efficiently calculating gradients of objective functions with respect to design parameters. It outperforms other methods in terms of computational cost and is widely used in sensitivity analysis. Traditional methods, such as finite difference, require a large number of simulations as the number of design parameters increases, limiting the scope of optimization. However, the adjoint method in CFD allows for gradient calculation of an objective function at the cost of one flow field computation, making it practically independent of the number of design parameters and providing a more flexible and robust optimization tool. The aim of this thesis is to advance knowledge and expertise in the utilization of the adjoint method, with a specific focus on flows inside pipe bends commonly encountered in problems involving multiphase flows with particle transport. The work encompasses validating implementations, optimizing fluid dynamics systems, addressing problems related to particles in optimized systems, and proposing a novel adjoint-based formulation for shape optimization applied to multiphase flows. The adjoint fluid dynamics equations are derived at the level of partial differential equations using the continuous adjoint approach. The frozen turbulence assumption is adopted, neglecting variations of the turbulence field with respect to the design parameters. Furthermore, a technique for mesh adaptation is employed to adjust the shape of the computational domain as it is optimized. Firstly, the adjoint method is applied in a shape optimization process to minimize the total pressure losses in three different pipe fittings. Secondly, gas-solid flows are simulated in both the original and optimized pipe fittings to compare the erosion wear caused by particle impacts on the walls. This investigation explores how single-phase flow optimization can also affect the particle problem, i.e., mitigate erosion. The results demonstrate substantial reductions in peak erosion as a consequence of minimizing total losses, which can potentially increase the service life of these systems. Finally, new adjoint equations are derived to account for the dispersed phase of multiphase flows, and the corresponding sensitivity derivatives are obtained to maximize the deposition efficiency of particles on bend walls.
id UFU_a7eb9e5054d67a4000e031d91896822f
oai_identifier_str oai:repositorio.ufu.br:123456789/39112
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Adjoint-based shape optimization applied to multiphase flowsOtimização de forma baseada no método adjunto aplicada a escoamentos multifásicosmétodos adjuntosadjoint methodsotimização de formashape optimizationderivadas de sensibilidadesensitivity derivativesdinâmica de fluidos computacionalcomputational fluid dynamicsescoamentos multifásicosmultiphase flowsCNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTEEngenharia mecânicaFluidodinâmica computacionalEscoamento multifásicoOperadores auto-adjuntosThe adjoint method in computational fluid dynamics (CFD) offers a computationally affordable optimization by efficiently calculating gradients of objective functions with respect to design parameters. It outperforms other methods in terms of computational cost and is widely used in sensitivity analysis. Traditional methods, such as finite difference, require a large number of simulations as the number of design parameters increases, limiting the scope of optimization. However, the adjoint method in CFD allows for gradient calculation of an objective function at the cost of one flow field computation, making it practically independent of the number of design parameters and providing a more flexible and robust optimization tool. The aim of this thesis is to advance knowledge and expertise in the utilization of the adjoint method, with a specific focus on flows inside pipe bends commonly encountered in problems involving multiphase flows with particle transport. The work encompasses validating implementations, optimizing fluid dynamics systems, addressing problems related to particles in optimized systems, and proposing a novel adjoint-based formulation for shape optimization applied to multiphase flows. The adjoint fluid dynamics equations are derived at the level of partial differential equations using the continuous adjoint approach. The frozen turbulence assumption is adopted, neglecting variations of the turbulence field with respect to the design parameters. Furthermore, a technique for mesh adaptation is employed to adjust the shape of the computational domain as it is optimized. Firstly, the adjoint method is applied in a shape optimization process to minimize the total pressure losses in three different pipe fittings. Secondly, gas-solid flows are simulated in both the original and optimized pipe fittings to compare the erosion wear caused by particle impacts on the walls. This investigation explores how single-phase flow optimization can also affect the particle problem, i.e., mitigate erosion. The results demonstrate substantial reductions in peak erosion as a consequence of minimizing total losses, which can potentially increase the service life of these systems. Finally, new adjoint equations are derived to account for the dispersed phase of multiphase flows, and the corresponding sensitivity derivatives are obtained to maximize the deposition efficiency of particles on bend walls.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoTese (Doutorado)O método adjunto na dinâmica de fluidos computacional (CFD) proporciona uma otimização computacionalmente acessível, possibilitando que os gradientes das funções objetivo em relação aos parâmetros de projeto sejam calculados de forma eficiente. Ele supera outros métodos em termos de custo computacional e é amplamente utilizado em análise de sensibilidade. Métodos tradicionais, como diferenças finitas, exigem um grande número de simulações à medida que o número de parâmetros de projeto aumenta, limitando o escopo da otimização. No entanto, o método adjunto em CFD permite o cálculo do gradiente de uma função objetivo ao custo de um único cálculo do campo de escoamento, tornando-o praticamente independente do número de parâmetros de projeto, o que viabiliza uma ferramenta de otimização mais flexível e robusta. Sendo assim, o propósito desta tese é avançar no conhecimento e na experiência acerca da utilização do método adjunto, com foco específico em escoamentos em curvas de dutos comumente encontradas em problemas envolvendo escoamentos multifásicos com transporte de partículas. O trabalho inclui a validação de implementações, otimização de sistemas de dinâmica de fluidos, análise de problemas relacionados às partículas nos sistemas otimizados e proposição de uma nova formulação baseada no adjunto para otimização de forma aplicada a escoamentos multifásicos. As equações adjuntas de dinâmica de fluidos são derivadas a nível de equações diferenciais parciais usando a abordagem adjunta contínua. A hipótese de turbulência congelada é adotada, negligenciando variações do campo de turbulência em relação aos parâmetros de projeto. Além disso, uma técnica de adaptação de malha é empregada para ajustar a forma do domínio computacional à medida que é otimizada. Em primeiro lugar, o método adjunto é aplicado na otimização de forma para minimizar as perdas de pressão total em três diferentes curvas de dutos. Em segundo lugar, escoamentos gás-sólido são simulados nas curvas originais e otimizadas para comparar o desgaste erosivo causado pelo impacto das partículas nas paredes. Nessa investigação, explora-se como a otimização de um escoamento monofásico também pode afetar o problema relacionado às partículas, ou seja, mitigar a erosão. A partir dos resultados, reduções na taxa de erosão máxima como consequência da minimização das perdas totais são obtidas, o que pode aumentar potencialmente a vida útil desses sistemas. Por fim, novas equações adjuntas são desenvolvidas para considerar a fase dispersa dos escoamentos multifásicos, e as derivadas de sensibilidade correspondentes são deduzidas para maximizar a eficiência de deposição de partículas nas paredes de curvas.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia MecânicaSouza, Francisco José dehttp://lattes.cnpq.br/1257320066520278Duarte, Carlos Antonio Ribeirohttp://lattes.cnpq.br/3533635470069420Silveira Neto, Aristeu dahttp://lattes.cnpq.br/4650888739121183Lobato, Fran Sérgiohttp://lattes.cnpq.br/7640108116459444Meier, Henry Françahttp://lattes.cnpq.br/2594453880874755Santos, Jessica Guarato de Freitas2023-09-15T16:52:45Z2023-09-15T16:52:45Z2023-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSANTOS, Jessica Guarato de Freitas. Otimização de forma baseada no método adjunto aplicada a escoamentos multifásicos. 2023. 132 f. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.477https://repositorio.ufu.br/handle/123456789/39112http://doi.org/10.14393/ufu.te.2023.477enghttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-08-22T16:54:37Zoai:repositorio.ufu.br:123456789/39112Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-08-22T16:54:37Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Adjoint-based shape optimization applied to multiphase flows
Otimização de forma baseada no método adjunto aplicada a escoamentos multifásicos
title Adjoint-based shape optimization applied to multiphase flows
spellingShingle Adjoint-based shape optimization applied to multiphase flows
Santos, Jessica Guarato de Freitas
métodos adjuntos
adjoint methods
otimização de forma
shape optimization
derivadas de sensibilidade
sensitivity derivatives
dinâmica de fluidos computacional
computational fluid dynamics
escoamentos multifásicos
multiphase flows
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE
Engenharia mecânica
Fluidodinâmica computacional
Escoamento multifásico
Operadores auto-adjuntos
title_short Adjoint-based shape optimization applied to multiphase flows
title_full Adjoint-based shape optimization applied to multiphase flows
title_fullStr Adjoint-based shape optimization applied to multiphase flows
title_full_unstemmed Adjoint-based shape optimization applied to multiphase flows
title_sort Adjoint-based shape optimization applied to multiphase flows
author Santos, Jessica Guarato de Freitas
author_facet Santos, Jessica Guarato de Freitas
author_role author
dc.contributor.none.fl_str_mv Souza, Francisco José de
http://lattes.cnpq.br/1257320066520278
Duarte, Carlos Antonio Ribeiro
http://lattes.cnpq.br/3533635470069420
Silveira Neto, Aristeu da
http://lattes.cnpq.br/4650888739121183
Lobato, Fran Sérgio
http://lattes.cnpq.br/7640108116459444
Meier, Henry França
http://lattes.cnpq.br/2594453880874755
dc.contributor.author.fl_str_mv Santos, Jessica Guarato de Freitas
dc.subject.por.fl_str_mv métodos adjuntos
adjoint methods
otimização de forma
shape optimization
derivadas de sensibilidade
sensitivity derivatives
dinâmica de fluidos computacional
computational fluid dynamics
escoamentos multifásicos
multiphase flows
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE
Engenharia mecânica
Fluidodinâmica computacional
Escoamento multifásico
Operadores auto-adjuntos
topic métodos adjuntos
adjoint methods
otimização de forma
shape optimization
derivadas de sensibilidade
sensitivity derivatives
dinâmica de fluidos computacional
computational fluid dynamics
escoamentos multifásicos
multiphase flows
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE
Engenharia mecânica
Fluidodinâmica computacional
Escoamento multifásico
Operadores auto-adjuntos
description The adjoint method in computational fluid dynamics (CFD) offers a computationally affordable optimization by efficiently calculating gradients of objective functions with respect to design parameters. It outperforms other methods in terms of computational cost and is widely used in sensitivity analysis. Traditional methods, such as finite difference, require a large number of simulations as the number of design parameters increases, limiting the scope of optimization. However, the adjoint method in CFD allows for gradient calculation of an objective function at the cost of one flow field computation, making it practically independent of the number of design parameters and providing a more flexible and robust optimization tool. The aim of this thesis is to advance knowledge and expertise in the utilization of the adjoint method, with a specific focus on flows inside pipe bends commonly encountered in problems involving multiphase flows with particle transport. The work encompasses validating implementations, optimizing fluid dynamics systems, addressing problems related to particles in optimized systems, and proposing a novel adjoint-based formulation for shape optimization applied to multiphase flows. The adjoint fluid dynamics equations are derived at the level of partial differential equations using the continuous adjoint approach. The frozen turbulence assumption is adopted, neglecting variations of the turbulence field with respect to the design parameters. Furthermore, a technique for mesh adaptation is employed to adjust the shape of the computational domain as it is optimized. Firstly, the adjoint method is applied in a shape optimization process to minimize the total pressure losses in three different pipe fittings. Secondly, gas-solid flows are simulated in both the original and optimized pipe fittings to compare the erosion wear caused by particle impacts on the walls. This investigation explores how single-phase flow optimization can also affect the particle problem, i.e., mitigate erosion. The results demonstrate substantial reductions in peak erosion as a consequence of minimizing total losses, which can potentially increase the service life of these systems. Finally, new adjoint equations are derived to account for the dispersed phase of multiphase flows, and the corresponding sensitivity derivatives are obtained to maximize the deposition efficiency of particles on bend walls.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-15T16:52:45Z
2023-09-15T16:52:45Z
2023-08-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SANTOS, Jessica Guarato de Freitas. Otimização de forma baseada no método adjunto aplicada a escoamentos multifásicos. 2023. 132 f. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.477
https://repositorio.ufu.br/handle/123456789/39112
http://doi.org/10.14393/ufu.te.2023.477
identifier_str_mv SANTOS, Jessica Guarato de Freitas. Otimização de forma baseada no método adjunto aplicada a escoamentos multifásicos. 2023. 132 f. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.te.2023.477
url https://repositorio.ufu.br/handle/123456789/39112
http://doi.org/10.14393/ufu.te.2023.477
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Mecânica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Mecânica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711294930354176