Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais

Detalhes bibliográficos
Autor(a) principal: Silva, Gustavo Moreira da
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/30218
https://doi.org/10.14393/ufu.te.2020.624
Resumo: The Electroencephalogram (EEG) has been the most preferred way of recording brain activity due to its noninvasiveness and affordability benefits. Information estimated from EEG has been employed broadly, e.g., for diagnosis or as an input signal to Brain-Computer Interfaces (BCI). Nevertheless, the EEG is prone to artifacts including non-brain physiological activities, such as eye blinking and the contraction of the muscles of the scalp. Some applications such as BCI systems may occasionally be associated with frequent contractions of muscles of the head corrupting the EEG-based control signal. This requires the application of several filtering techniques. However, the gold standard techniques for signal filtering still contain limitations, such as the incapacity of eliminating noise in all EEG channels. For this reason, besides studying and applying filtering techniques, it is necessary to understand the contamination from electromyogram (EMG) along the scalp. Several studies concluded that EMG artifact contaminates the EEG at frequencies beginning at 15 Hz on the topographic distribution of the energy that encompasses practically the entire scalp. Thus, the present work aims to quantitatively estimate EMG noise in 16 bipolar channels of EEG distributed along the scalp according to the 10-20 system. This estimation was based on an experimental protocol considering the simultaneous acquisition of EEG and EMG of five facial muscles sampled at 5 kHz. The protocol consisted of activating facial muscles while listening to 15 beep sounds. The evaluated muscles were frontal, masseter, zygomatic, orbicularis oculi, and orbicularis oris. The mean power of the EEG contaminated by EMG of facial muscle contractions was compared between the periods of muscle contraction and non-contraction. The results show that EMG contamination from frontal and masseter muscles are present over the scalp with an increase from 63.5 μV2 to 816 μV2 and from 118.3 μV2 to 5,617.9 μV2, respectively. Also, this work proposes a technique for EMG artifact removal that is less sensitive to low SNR as the current gold standard techniques. The proposed method, so-called EMDRLS, employs Empirical Mode Decomposition (EMD) to generate an EMG noise reference to an adaptive Recursive Least Squares (RLS) filter. To test the EMDRLS method, EEG signals were collected from 10 healthy subjects during the controlled execution of successive facial muscular contractions. The experimental protocol considered the isolated activation of the masseter and frontal muscles. EEG corrupted signals were filtered by the EMDRLS method considering distinct SNRs. The results were compared to traditional approaches: Wiener, Wavelet, EMD, and a hybrid wavelet-RLS filtering method. The following performance metrics were considered in the comparative evaluation: (i) SNR of the contaminated signal; (ii) the root mean square error (RMSE) between the power spectrum of artifact-free and filtered EEG epochs; (iii) the spectral preservation of brain rhythms (i.e., delta, theta, alpha, beta, and gamma) of filtered signals. For EEG signals with SNR below -10dB, the EMDRLS method yielded filtered EEG signals with SNR varying from 0 to 10 dB. The technique reduced the RMSE of frontal channels from 1.202 to 0.043, which are the source of the most corrupted EEG signals. The Kruskal-Wallis test and the Tukey-Kramer post-hoc test (p < 0.05) confirmed the preservation of all brain rhythms given by EEG signals filtered with the EMDRLS method. The results have shown that the single-channel EMDRLS method can be applied to highly contaminated EEG signals by facial EMG signal with performance superior to that of established methods.
id UFU_ab19df8709bcfdb812bea8d669809327
oai_identifier_str oai:repositorio.ufu.br:123456789/30218
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciaisCharacterization and filtering of electroencephalogram contaminated by electromyography of facial musclesEletroencefalograma (EEG)Electroencephalogram (EEG)Eletromiograma (EMG)Electromyogram (EMG)Remoção de artefatosArtifact removalFiltragem digitalDigital filteringCaracterização do EEGEEG characterizationInterface Homem-ComputadorHuman Computer InterfaceDecomposição em modos empíricosEmpirical mode decompositionFiltragem adaptativaAdaptive filteringFiltragem waveletWavelet filteringFiltragem de WienerWiener filteringCNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOSFace - MúsculosEletromiografiaThe Electroencephalogram (EEG) has been the most preferred way of recording brain activity due to its noninvasiveness and affordability benefits. Information estimated from EEG has been employed broadly, e.g., for diagnosis or as an input signal to Brain-Computer Interfaces (BCI). Nevertheless, the EEG is prone to artifacts including non-brain physiological activities, such as eye blinking and the contraction of the muscles of the scalp. Some applications such as BCI systems may occasionally be associated with frequent contractions of muscles of the head corrupting the EEG-based control signal. This requires the application of several filtering techniques. However, the gold standard techniques for signal filtering still contain limitations, such as the incapacity of eliminating noise in all EEG channels. For this reason, besides studying and applying filtering techniques, it is necessary to understand the contamination from electromyogram (EMG) along the scalp. Several studies concluded that EMG artifact contaminates the EEG at frequencies beginning at 15 Hz on the topographic distribution of the energy that encompasses practically the entire scalp. Thus, the present work aims to quantitatively estimate EMG noise in 16 bipolar channels of EEG distributed along the scalp according to the 10-20 system. This estimation was based on an experimental protocol considering the simultaneous acquisition of EEG and EMG of five facial muscles sampled at 5 kHz. The protocol consisted of activating facial muscles while listening to 15 beep sounds. The evaluated muscles were frontal, masseter, zygomatic, orbicularis oculi, and orbicularis oris. The mean power of the EEG contaminated by EMG of facial muscle contractions was compared between the periods of muscle contraction and non-contraction. The results show that EMG contamination from frontal and masseter muscles are present over the scalp with an increase from 63.5 μV2 to 816 μV2 and from 118.3 μV2 to 5,617.9 μV2, respectively. Also, this work proposes a technique for EMG artifact removal that is less sensitive to low SNR as the current gold standard techniques. The proposed method, so-called EMDRLS, employs Empirical Mode Decomposition (EMD) to generate an EMG noise reference to an adaptive Recursive Least Squares (RLS) filter. To test the EMDRLS method, EEG signals were collected from 10 healthy subjects during the controlled execution of successive facial muscular contractions. The experimental protocol considered the isolated activation of the masseter and frontal muscles. EEG corrupted signals were filtered by the EMDRLS method considering distinct SNRs. The results were compared to traditional approaches: Wiener, Wavelet, EMD, and a hybrid wavelet-RLS filtering method. The following performance metrics were considered in the comparative evaluation: (i) SNR of the contaminated signal; (ii) the root mean square error (RMSE) between the power spectrum of artifact-free and filtered EEG epochs; (iii) the spectral preservation of brain rhythms (i.e., delta, theta, alpha, beta, and gamma) of filtered signals. For EEG signals with SNR below -10dB, the EMDRLS method yielded filtered EEG signals with SNR varying from 0 to 10 dB. The technique reduced the RMSE of frontal channels from 1.202 to 0.043, which are the source of the most corrupted EEG signals. The Kruskal-Wallis test and the Tukey-Kramer post-hoc test (p < 0.05) confirmed the preservation of all brain rhythms given by EEG signals filtered with the EMDRLS method. The results have shown that the single-channel EMDRLS method can be applied to highly contaminated EEG signals by facial EMG signal with performance superior to that of established methods.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas GeraisTese (Doutorado)O Eletroencefalograma (EEG), é uma medida da atividade cerebral que ostenta as vantagens de portabilidade, baixo custo, alta resolução temporal e não invasivo. Os desafios desse exame são os artefatos de diferentes fontes que tornam a análise de dados do EEG mais difícil, e que potencialmente resulta em erros de interpretação. Portanto, é essencial para muitas aplicações médicas e práticas remover esses artefatos no pré-processamento antes de analisar os dados do EEG. Nos últimos trinta anos, vários métodos foram desenvolvidos para remover diferentes tipos de artefatos de dados de EEG contaminados; ainda assim, não há nenhum método padrão que pode ser usado de forma otimizada e, portanto, a pesquisa permanece atraente e desafiadora. Algumas aplicações, como as Interfaces Homem Computador (HCI), podem ocasionalmente estar associadas a frequentes contrações dos músculos da cabeça, corrompendo o sinal de controle baseado no EEG, requerendo a aplicação de alguma técnica de filtragem. No entanto, as técnicas padrão de ouro para filtragem de sinal ainda contêm limitações, como a incapacidade de eliminar o ruído em todos os canais EEG com relações sinal-ruído (SNR) muito baixas e quando a faixa espectral do ruído sobrepõe a do EEG, que caracteriza diversas contaminações no EEG, mas principalmente a contaminação oriunda do sinal eletromiográfico. Por esta razão, além de estudar e aplicar técnicas de filtragem, é necessário entender a contaminação do eletromiograma (EMG) ao longo do couro cabeludo. Alguns estudos concluíram que o artefato EMG contamina o EEG em frequências a partir de 15 Hz em uma distribuição topográfica que engloba praticamente todo o couro cabeludo. Assim, o presente trabalho tem como objetivo estimar quantitativamente o ruído EMG em 16 canais bipolares de EEG distribuídos ao longo do couro cabeludo de acordo com o sistema 10-20. Essa estimativa foi baseada em um protocolo experimental considerando a aquisição simultânea de EEG e EMG de cinco músculos faciais amostrados a 5 kHz. O protocolo consistiu em ativar os músculos faciais enquanto o voluntário ouvisse 15 sons de bip. Os músculos avaliados foram o frontal, masseter, temporal, zigomático, orbicular do olho e orbicular da boca. A potência média do EEG contaminado pela EMG das contrações da musculatura facial foi comparado entre os períodos de contração muscular e não contração. Os resultados mostram que a contaminação muscular do frontal e do masseter provoca um aumento de energia sobre o couro cabeludo de 63,5 μV2 para 816 μV2 e de 118,3 μV2 para 5,617,9 μV2, respectivamente. Além disso, este trabalho propõe uma técnica de remoção do artefato de EMG menos sensível a baixas SNRs que as atuais técnicas padrão ouro. O método proposto, chamado EMDRLS, emprega Decomposição do Modo Empírico (EMD) para gerar uma referência de ruído EMG a um filtro RLS (Recursive Least Squares) adaptativo. Para testar o EMDRLS, foram coletados sinais de EEG de 10 indivíduos saudáveis durante a execução controlada de sucessivas contrações musculares faciais. O protocolo experimental considerou a ativação isolada dos músculos masseter e frontal. Os sinais corrompidos por EEG foram filtrados por EMDRLS considerando SNRs distintos. Os resultados foram comparados às abordagens tradicionais: Wiener, Wavelet, EMD e um método de filtragem híbrido wavelet-RLS. As seguintes métricas de desempenho foram consideradas na avaliação comparativa: (i) SNR do sinal contaminado; (ii) o erro quadrático médio da raiz (RMSE) entre o espectro de potência das épocas de EEG filtradas e sem artefatos; (iii) a preservação espectral de ritmos cerebrais (isto é, delta, teta, alfa, beta e gama) dos sinais filtrados. Para sinais EEG com SNR abaixo de -10dB, o método EMDRLS produziu sinais EEG filtrados com SNR variando de 0 a 10 dB. A técnica reduziu o RMSE dos canais frontais de 1,202 para 0,043, que são a fonte dos sinais de EEG mais corrompidos. O teste de Kruskal-Wallis e o teste post-hoc de Tukey-Kramer (p <0,05) confirmaram a preservação de todos os ritmos cerebrais dados pelos sinais de EEG filtrados pelo método EMDRLS. Os resultados mostraram que o método EMDRLS pode ser aplicado a sinais EEG altamente contaminados por sinal facial EMG com desempenho superior ao dos métodos estabelecidos.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia ElétricaAndrade, Adriano de Oliveirahttp://lattes.cnpq.br/1229329519982110Soares, Alcimar Barbosahttp://lattes.cnpq.br/9801031941805250Pereira, Adriano Alveshttp://lattes.cnpq.br/7340105957340705Vieira, Marcus Fragahttp://lattes.cnpq.br/4153462617460766Morya, Edgardhttp://lattes.cnpq.br/8813809602087639Rocha, Adson Ferreira dahttp://lattes.cnpq.br/1141716826787805Silva, Gustavo Moreira da2020-10-27T11:42:37Z2020-10-27T11:42:37Z2020-08-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSILVA, Gustavo Moreira da. Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais. 2020. 123 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI https://doi.org/10.14393/ufu.te.2020.624.https://repositorio.ufu.br/handle/123456789/30218https://doi.org/10.14393/ufu.te.2020.624porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2020-10-28T06:18:36Zoai:repositorio.ufu.br:123456789/30218Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2020-10-28T06:18:36Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais
Characterization and filtering of electroencephalogram contaminated by electromyography of facial muscles
title Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais
spellingShingle Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais
Silva, Gustavo Moreira da
Eletroencefalograma (EEG)
Electroencephalogram (EEG)
Eletromiograma (EMG)
Electromyogram (EMG)
Remoção de artefatos
Artifact removal
Filtragem digital
Digital filtering
Caracterização do EEG
EEG characterization
Interface Homem-Computador
Human Computer Interface
Decomposição em modos empíricos
Empirical mode decomposition
Filtragem adaptativa
Adaptive filtering
Filtragem wavelet
Wavelet filtering
Filtragem de Wiener
Wiener filtering
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
Face - Músculos
Eletromiografia
title_short Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais
title_full Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais
title_fullStr Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais
title_full_unstemmed Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais
title_sort Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais
author Silva, Gustavo Moreira da
author_facet Silva, Gustavo Moreira da
author_role author
dc.contributor.none.fl_str_mv Andrade, Adriano de Oliveira
http://lattes.cnpq.br/1229329519982110
Soares, Alcimar Barbosa
http://lattes.cnpq.br/9801031941805250
Pereira, Adriano Alves
http://lattes.cnpq.br/7340105957340705
Vieira, Marcus Fraga
http://lattes.cnpq.br/4153462617460766
Morya, Edgard
http://lattes.cnpq.br/8813809602087639
Rocha, Adson Ferreira da
http://lattes.cnpq.br/1141716826787805
dc.contributor.author.fl_str_mv Silva, Gustavo Moreira da
dc.subject.por.fl_str_mv Eletroencefalograma (EEG)
Electroencephalogram (EEG)
Eletromiograma (EMG)
Electromyogram (EMG)
Remoção de artefatos
Artifact removal
Filtragem digital
Digital filtering
Caracterização do EEG
EEG characterization
Interface Homem-Computador
Human Computer Interface
Decomposição em modos empíricos
Empirical mode decomposition
Filtragem adaptativa
Adaptive filtering
Filtragem wavelet
Wavelet filtering
Filtragem de Wiener
Wiener filtering
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
Face - Músculos
Eletromiografia
topic Eletroencefalograma (EEG)
Electroencephalogram (EEG)
Eletromiograma (EMG)
Electromyogram (EMG)
Remoção de artefatos
Artifact removal
Filtragem digital
Digital filtering
Caracterização do EEG
EEG characterization
Interface Homem-Computador
Human Computer Interface
Decomposição em modos empíricos
Empirical mode decomposition
Filtragem adaptativa
Adaptive filtering
Filtragem wavelet
Wavelet filtering
Filtragem de Wiener
Wiener filtering
CNPQ::ENGENHARIAS::ENGENHARIA BIOMEDICA::BIOENGENHARIA::PROCESSAMENTO DE SINAIS BIOLOGICOS
Face - Músculos
Eletromiografia
description The Electroencephalogram (EEG) has been the most preferred way of recording brain activity due to its noninvasiveness and affordability benefits. Information estimated from EEG has been employed broadly, e.g., for diagnosis or as an input signal to Brain-Computer Interfaces (BCI). Nevertheless, the EEG is prone to artifacts including non-brain physiological activities, such as eye blinking and the contraction of the muscles of the scalp. Some applications such as BCI systems may occasionally be associated with frequent contractions of muscles of the head corrupting the EEG-based control signal. This requires the application of several filtering techniques. However, the gold standard techniques for signal filtering still contain limitations, such as the incapacity of eliminating noise in all EEG channels. For this reason, besides studying and applying filtering techniques, it is necessary to understand the contamination from electromyogram (EMG) along the scalp. Several studies concluded that EMG artifact contaminates the EEG at frequencies beginning at 15 Hz on the topographic distribution of the energy that encompasses practically the entire scalp. Thus, the present work aims to quantitatively estimate EMG noise in 16 bipolar channels of EEG distributed along the scalp according to the 10-20 system. This estimation was based on an experimental protocol considering the simultaneous acquisition of EEG and EMG of five facial muscles sampled at 5 kHz. The protocol consisted of activating facial muscles while listening to 15 beep sounds. The evaluated muscles were frontal, masseter, zygomatic, orbicularis oculi, and orbicularis oris. The mean power of the EEG contaminated by EMG of facial muscle contractions was compared between the periods of muscle contraction and non-contraction. The results show that EMG contamination from frontal and masseter muscles are present over the scalp with an increase from 63.5 μV2 to 816 μV2 and from 118.3 μV2 to 5,617.9 μV2, respectively. Also, this work proposes a technique for EMG artifact removal that is less sensitive to low SNR as the current gold standard techniques. The proposed method, so-called EMDRLS, employs Empirical Mode Decomposition (EMD) to generate an EMG noise reference to an adaptive Recursive Least Squares (RLS) filter. To test the EMDRLS method, EEG signals were collected from 10 healthy subjects during the controlled execution of successive facial muscular contractions. The experimental protocol considered the isolated activation of the masseter and frontal muscles. EEG corrupted signals were filtered by the EMDRLS method considering distinct SNRs. The results were compared to traditional approaches: Wiener, Wavelet, EMD, and a hybrid wavelet-RLS filtering method. The following performance metrics were considered in the comparative evaluation: (i) SNR of the contaminated signal; (ii) the root mean square error (RMSE) between the power spectrum of artifact-free and filtered EEG epochs; (iii) the spectral preservation of brain rhythms (i.e., delta, theta, alpha, beta, and gamma) of filtered signals. For EEG signals with SNR below -10dB, the EMDRLS method yielded filtered EEG signals with SNR varying from 0 to 10 dB. The technique reduced the RMSE of frontal channels from 1.202 to 0.043, which are the source of the most corrupted EEG signals. The Kruskal-Wallis test and the Tukey-Kramer post-hoc test (p < 0.05) confirmed the preservation of all brain rhythms given by EEG signals filtered with the EMDRLS method. The results have shown that the single-channel EMDRLS method can be applied to highly contaminated EEG signals by facial EMG signal with performance superior to that of established methods.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-27T11:42:37Z
2020-10-27T11:42:37Z
2020-08-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, Gustavo Moreira da. Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais. 2020. 123 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI https://doi.org/10.14393/ufu.te.2020.624.
https://repositorio.ufu.br/handle/123456789/30218
https://doi.org/10.14393/ufu.te.2020.624
identifier_str_mv SILVA, Gustavo Moreira da. Caracterização e filtragem de eletroencefalograma contaminado por eletromiografia dos músculos faciais. 2020. 123 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2020. DOI https://doi.org/10.14393/ufu.te.2020.624.
url https://repositorio.ufu.br/handle/123456789/30218
https://doi.org/10.14393/ufu.te.2020.624
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711562661167104