Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor

Detalhes bibliográficos
Autor(a) principal: Arroyo, Alvaro Daniel Herrera
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/34026
http://doi.org/10.14393/ufu.di.2021.716
Resumo: Na última década, com o desenvolvimento contínuo de Drones ou Veículos Aéreos Não Tripulados (VANTs), uma grande variedade de modelos foi testada e criada, destacando dois tipos de Drones: multicópteros e asas fixas. Contudo, recentemente, tem havido uma demanda crescente por explorar a combinação entre esses dois tipos de veículos, levando aos modelos de decolagem e pouso vertical (Vertical Take Off and Landing - VTOL), que buscam produzir uma aeronave capaz de ter as características de estabilidade de um multicóptero no modo de voo pairado no ar (hover) e a velocidade e autonomia de voo elevada que uma asa fixa geralmente fornece no modo de voo cruzeiro (voo reto nivelado). Em contrapartida às vantagens do VTOL, o desafio com esta classe de aeronaves é que estas estão sujeitas a um alto grau de não-linearidade, próprio da mistura entre duas arquiteturas de aeronave diferentes. Adicionalmente, como todo veículo aéreo, devem ser capazes de lidar com perturbações atmosféricas no ar. O objetivo principal deste trabalho é o de propor uma nova arquitetura de VANT VTOL com topologia tricóptero. Esta aeronave conta com inclinação independente de rotores em conjunto com asas, vetorizando forças de propulsão e forças aerodinâmicas, com o objetivo de auxiliar no controle da aeronave, diminuir o impacto de downwash e aproveitar uma mesma estrutura de rotores para exercer movimento do veículo em várias direções. O veículo usa rotores-coaxiais para balancear o torque induzido entre os rotores para todo ângulo de inclinação dos mesmos e, adicionalmente, aumentar a força de tração. A modelagem dinâmica foi desenvolvida tomando como base as leis físicas que regem sobre os princípios propulsivos, aerodinâmicos e inerciais. Destacando especialmente o centro de gravidade (CG) móvel devido ao veículo se caracterizar por ser um sistema multi corpo, com capacidade de assumir uma morfologia não simétrica. O design da aeronave foi feito através do software de desenho 3D SolidWorks®, considerando componentes elétricos e mecânicos reais de forma a obter um modelo teórico da aeronave o mais próximo da realidade. O tensor de inércia do veículo foi validado através da comparação do tensor de inércia gerado pelo modelo matemático e o tensor de inércia gerado pelo SolidWorks®. Para a simulação, o modelo da aeronave foi linearizado nas condições de voo hover e cruzeiro e o controle da aeronave foi implementado através de uma estratégia de controle em cascata. Um controlador regulador linear quadrático com integração de estados (LQRI) foi utilizado para controlar as velocidades lineares e angulares da aeronave, enquanto que um controlador proporcional integral derivativo (PID) foi usado para controlar a posição e atitude da aeronave no espaço. A estratégia de controle adotada permitiu realizar o seguimento de trajetórias de forma satisfatória, mesmo na presença de perturbações atmosféricas.
id UFU_b412db843d65cbb98979ebf39d2bf150
oai_identifier_str oai:repositorio.ufu.br:123456789/34026
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling 2022-02-01T14:01:23Z2022-02-01T14:01:23Z2021-12-14ARROYO, Alvaro Daniel Herrera. Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor. 2021. 139 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2021. DOI http://doi.org/10.14393/ufu.di.2021.716.https://repositorio.ufu.br/handle/123456789/34026http://doi.org/10.14393/ufu.di.2021.716Na última década, com o desenvolvimento contínuo de Drones ou Veículos Aéreos Não Tripulados (VANTs), uma grande variedade de modelos foi testada e criada, destacando dois tipos de Drones: multicópteros e asas fixas. Contudo, recentemente, tem havido uma demanda crescente por explorar a combinação entre esses dois tipos de veículos, levando aos modelos de decolagem e pouso vertical (Vertical Take Off and Landing - VTOL), que buscam produzir uma aeronave capaz de ter as características de estabilidade de um multicóptero no modo de voo pairado no ar (hover) e a velocidade e autonomia de voo elevada que uma asa fixa geralmente fornece no modo de voo cruzeiro (voo reto nivelado). Em contrapartida às vantagens do VTOL, o desafio com esta classe de aeronaves é que estas estão sujeitas a um alto grau de não-linearidade, próprio da mistura entre duas arquiteturas de aeronave diferentes. Adicionalmente, como todo veículo aéreo, devem ser capazes de lidar com perturbações atmosféricas no ar. O objetivo principal deste trabalho é o de propor uma nova arquitetura de VANT VTOL com topologia tricóptero. Esta aeronave conta com inclinação independente de rotores em conjunto com asas, vetorizando forças de propulsão e forças aerodinâmicas, com o objetivo de auxiliar no controle da aeronave, diminuir o impacto de downwash e aproveitar uma mesma estrutura de rotores para exercer movimento do veículo em várias direções. O veículo usa rotores-coaxiais para balancear o torque induzido entre os rotores para todo ângulo de inclinação dos mesmos e, adicionalmente, aumentar a força de tração. A modelagem dinâmica foi desenvolvida tomando como base as leis físicas que regem sobre os princípios propulsivos, aerodinâmicos e inerciais. Destacando especialmente o centro de gravidade (CG) móvel devido ao veículo se caracterizar por ser um sistema multi corpo, com capacidade de assumir uma morfologia não simétrica. O design da aeronave foi feito através do software de desenho 3D SolidWorks®, considerando componentes elétricos e mecânicos reais de forma a obter um modelo teórico da aeronave o mais próximo da realidade. O tensor de inércia do veículo foi validado através da comparação do tensor de inércia gerado pelo modelo matemático e o tensor de inércia gerado pelo SolidWorks®. Para a simulação, o modelo da aeronave foi linearizado nas condições de voo hover e cruzeiro e o controle da aeronave foi implementado através de uma estratégia de controle em cascata. Um controlador regulador linear quadrático com integração de estados (LQRI) foi utilizado para controlar as velocidades lineares e angulares da aeronave, enquanto que um controlador proporcional integral derivativo (PID) foi usado para controlar a posição e atitude da aeronave no espaço. A estratégia de controle adotada permitiu realizar o seguimento de trajetórias de forma satisfatória, mesmo na presença de perturbações atmosféricas.In the last decade, with the continuous development of Drones or Unmanned Aerial Vehicles (UAVs), a wide variety of models were tested and created, highlighting two types of Drones: multicopters and fixed wings. However, recently, there has been a growing demand to explore the “mixture” between these two types of vehicles. Leading to Vertical Take Off and Landing (VTOL) models, which seek to produce an aircraft capable of having the stability characteristics of a multicopter in hover flight mode, and the speed and high flight time that a fixed wing typically provides in cruise mode (straight level flight). In contrast to the advantages of VTOLs, the challenge with this class of aircraft is that they are subject to a high degree of non-linearity, typical of the mixture between two different aircraft architectures. Additionally, like all air vehicles, they must be able to deal with aerodynamic disturbances in the air. The main objective of this work is to propose a new UAV VTOL architecture with tricopter topology. This aircraft has independent rotor inclination together with wings, vectoring propulsion forces and aerodynamic forces, in order to help control the aircraft, reduce the downwash impact and take advantage of the same rotor structure to exert vehicle movement in several directions. The vehicle uses coaxial-rotors to balance the induced torque between the rotors for every tilting angle and, additionally, to increase the thrust force. The dynamic modeling was developed based on the physical laws that govern the propulsive, aerodynamic and inertial principles. Especially highlighting the mobile center of gravity (CG) due to the fact that the vehicle is characterized as a multi-body system, capable of assuming a non-symmetrical morphology. The aircraft design was made using SolidWorks® 3D design software, considering real electrical and mechanical components in order to obtain a theoretical model of the aircraft as close to reality. The vehicle's inertia tensor was validated by comparing the inertia tensor generated by the mathematical model and the inertia tensor generated by SolidWorks®. For the simulation, the aircraft model was linearized under the hover and cruise flight conditions and the aircraft control was implemented through a cascade control strategy. A state-integrated linear quadratic regulator controller (LQRI) was used to control the linear and angular velocities of the aircraft, while a proportional derivative integral controller (PID) was used to control the aircraft's position and attitude in space. The control strategy adopted allowed for the tracking of trajectories in a satisfactory manner, even in the presence of aerodynamic disturbances.Dissertação (Mestrado)porUniversidade Federal de UberlândiaPrograma de Pós-graduação em Engenharia ElétricaBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessCNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::DINAMICA DE VOO::ESTABILIDADE E CONTROLECNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::DINAMICA DE VOOEngenharia elétricaAeronaves - Métodos de simulaçãoDrone- Métodos de simulaçãoControle ÓtimoOptimal ControlControle PIDPID ControlMecânica do VooFlight MechanicsModelagem DinâmicaDynamic ModellingRastreamento de TrajetóriaTrajectory TrackingRotor-coaxialCoaxial-rotorTilt-rotorTilt-rotorVTOLVTOLModelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotorModeling, simulation and control of a new proposal of tilt-wing-coaxial-rotor tricopter aircraftinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisLima, Gabriela Vieirahttp://lattes.cnpq.br/6367204273336062Morais, Aniel Silva dehttp://lattes.cnpq.br/8844251698422960Morales, Mauricio Andrés Varelahttp://lattes.cnpq.br/9213259689156118Ramos, Daniel Costahttp://lattes.cnpq.br/5562358915665822http://lattes.cnpq.br/3286994401789321Arroyo, Alvaro Daniel Herrera139107471638reponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFUORIGINALModelagemSimulaçãoControle.pdfModelagemSimulaçãoControle.pdfDISSERTAÇÃOapplication/pdf9070205https://repositorio.ufu.br/bitstream/123456789/34026/1/ModelagemSimula%c3%a7%c3%a3oControle.pdf71fec4ae078f434c44c7b932ee388b20MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufu.br/bitstream/123456789/34026/2/license_rdf9868ccc48a14c8d591352b6eaf7f6239MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.ufu.br/bitstream/123456789/34026/3/license.txt48ded82ce41b8d2426af12aed6b3cbf3MD53TEXTModelagemSimulaçãoControle.pdf.txtModelagemSimulaçãoControle.pdf.txtExtracted texttext/plain418244https://repositorio.ufu.br/bitstream/123456789/34026/4/ModelagemSimula%c3%a7%c3%a3oControle.pdf.txt4f0c8322e60d9e22375cba4461c939bfMD54THUMBNAILModelagemSimulaçãoControle.pdf.jpgModelagemSimulaçãoControle.pdf.jpgGenerated Thumbnailimage/jpeg1378https://repositorio.ufu.br/bitstream/123456789/34026/5/ModelagemSimula%c3%a7%c3%a3oControle.pdf.jpg8e46f6fd9c321dbf9877f7e14c99d1a7MD55123456789/340262022-02-02 03:15:00.744oai:repositorio.ufu.br:123456789/34026w4kgbmVjZXNzw6FyaW8gY29uY29yZGFyIGNvbSBhIGxpY2Vuw6dhIGRlIGRpc3RyaWJ1acOnw6NvIG7Do28tZXhjbHVzaXZhLCBhbnRlcyBxdWUgbyBkb2N1bWVudG8gcG9zc2EgYXBhcmVjZXIgbm8gUmVwb3NpdMOzcmlvLiBQb3IgZmF2b3IsIGxlaWEgYSBsaWNlbsOnYSBhdGVudGFtZW50ZS4gQ2FzbyBuZWNlc3NpdGUgZGUgYWxndW0gZXNjbGFyZWNpbWVudG8gZW50cmUgZW0gY29udGF0byBhdHJhdsOpcyBkbyBlLW1haWwgIHJlcG9zaXRvcmlvQHVmdS5ici4KCkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpBbyBhc3NpbmFyIGUgZW50cmVnYXIgZXN0YSBsaWNlbsOnYSwgby9hIFNyLi9TcmEuIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpOgoKYSkgQ29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBVYmVybMOibmRpYSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGFiYWl4byksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIgbyBkb2N1bWVudG8gZW50cmVndWUgKGluY2x1aW5kbyBvIHJlc3Vtby9hYnN0cmFjdCkgZW0gZm9ybWF0byBkaWdpdGFsIG91IGltcHJlc3NvIGUgZW0gcXVhbHF1ZXIgbWVpby4KCmIpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIMOpIHNldSB0cmFiYWxobyBvcmlnaW5hbCwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2UsIHRhbnRvIHF1YW50byBsaGUgw6kgcG9zc8OtdmVsIHNhYmVyLCBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuCgpjKSBTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSBjb250w6ltIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIGRlY2xhcmEgcXVlIG9idGV2ZSBhdXRvcml6YcOnw6NvIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBwYXJhIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFViZXJsw6JuZGlhIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLgoKU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBVYmVybMOibmRpYSwgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFViZXJsw6JuZGlhIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBvKHMpIHNldShzKSBub21lKHMpIGNvbW8gbyhzKSBhdXRvcihlcykgb3UgZGV0ZW50b3IgKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2022-02-02T06:15Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.pt_BR.fl_str_mv Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor
dc.title.alternative.pt_BR.fl_str_mv Modeling, simulation and control of a new proposal of tilt-wing-coaxial-rotor tricopter aircraft
title Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor
spellingShingle Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor
Arroyo, Alvaro Daniel Herrera
CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::DINAMICA DE VOO::ESTABILIDADE E CONTROLE
CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::DINAMICA DE VOO
Controle Ótimo
Optimal Control
Controle PID
PID Control
Mecânica do Voo
Flight Mechanics
Modelagem Dinâmica
Dynamic Modelling
Rastreamento de Trajetória
Trajectory Tracking
Rotor-coaxial
Coaxial-rotor
Tilt-rotor
Tilt-rotor
VTOL
VTOL
Engenharia elétrica
Aeronaves - Métodos de simulação
Drone- Métodos de simulação
title_short Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor
title_full Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor
title_fullStr Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor
title_full_unstemmed Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor
title_sort Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor
author Arroyo, Alvaro Daniel Herrera
author_facet Arroyo, Alvaro Daniel Herrera
author_role author
dc.contributor.advisor-co1.fl_str_mv Lima, Gabriela Vieira
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6367204273336062
dc.contributor.advisor1.fl_str_mv Morais, Aniel Silva de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8844251698422960
dc.contributor.referee1.fl_str_mv Morales, Mauricio Andrés Varela
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/9213259689156118
dc.contributor.referee2.fl_str_mv Ramos, Daniel Costa
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5562358915665822
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3286994401789321
dc.contributor.author.fl_str_mv Arroyo, Alvaro Daniel Herrera
contributor_str_mv Lima, Gabriela Vieira
Morais, Aniel Silva de
Morales, Mauricio Andrés Varela
Ramos, Daniel Costa
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::DINAMICA DE VOO::ESTABILIDADE E CONTROLE
CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::DINAMICA DE VOO
topic CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::DINAMICA DE VOO::ESTABILIDADE E CONTROLE
CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::DINAMICA DE VOO
Controle Ótimo
Optimal Control
Controle PID
PID Control
Mecânica do Voo
Flight Mechanics
Modelagem Dinâmica
Dynamic Modelling
Rastreamento de Trajetória
Trajectory Tracking
Rotor-coaxial
Coaxial-rotor
Tilt-rotor
Tilt-rotor
VTOL
VTOL
Engenharia elétrica
Aeronaves - Métodos de simulação
Drone- Métodos de simulação
dc.subject.por.fl_str_mv Controle Ótimo
Optimal Control
Controle PID
PID Control
Mecânica do Voo
Flight Mechanics
Modelagem Dinâmica
Dynamic Modelling
Rastreamento de Trajetória
Trajectory Tracking
Rotor-coaxial
Coaxial-rotor
Tilt-rotor
Tilt-rotor
VTOL
VTOL
dc.subject.autorizado.pt_BR.fl_str_mv Engenharia elétrica
Aeronaves - Métodos de simulação
Drone- Métodos de simulação
description Na última década, com o desenvolvimento contínuo de Drones ou Veículos Aéreos Não Tripulados (VANTs), uma grande variedade de modelos foi testada e criada, destacando dois tipos de Drones: multicópteros e asas fixas. Contudo, recentemente, tem havido uma demanda crescente por explorar a combinação entre esses dois tipos de veículos, levando aos modelos de decolagem e pouso vertical (Vertical Take Off and Landing - VTOL), que buscam produzir uma aeronave capaz de ter as características de estabilidade de um multicóptero no modo de voo pairado no ar (hover) e a velocidade e autonomia de voo elevada que uma asa fixa geralmente fornece no modo de voo cruzeiro (voo reto nivelado). Em contrapartida às vantagens do VTOL, o desafio com esta classe de aeronaves é que estas estão sujeitas a um alto grau de não-linearidade, próprio da mistura entre duas arquiteturas de aeronave diferentes. Adicionalmente, como todo veículo aéreo, devem ser capazes de lidar com perturbações atmosféricas no ar. O objetivo principal deste trabalho é o de propor uma nova arquitetura de VANT VTOL com topologia tricóptero. Esta aeronave conta com inclinação independente de rotores em conjunto com asas, vetorizando forças de propulsão e forças aerodinâmicas, com o objetivo de auxiliar no controle da aeronave, diminuir o impacto de downwash e aproveitar uma mesma estrutura de rotores para exercer movimento do veículo em várias direções. O veículo usa rotores-coaxiais para balancear o torque induzido entre os rotores para todo ângulo de inclinação dos mesmos e, adicionalmente, aumentar a força de tração. A modelagem dinâmica foi desenvolvida tomando como base as leis físicas que regem sobre os princípios propulsivos, aerodinâmicos e inerciais. Destacando especialmente o centro de gravidade (CG) móvel devido ao veículo se caracterizar por ser um sistema multi corpo, com capacidade de assumir uma morfologia não simétrica. O design da aeronave foi feito através do software de desenho 3D SolidWorks®, considerando componentes elétricos e mecânicos reais de forma a obter um modelo teórico da aeronave o mais próximo da realidade. O tensor de inércia do veículo foi validado através da comparação do tensor de inércia gerado pelo modelo matemático e o tensor de inércia gerado pelo SolidWorks®. Para a simulação, o modelo da aeronave foi linearizado nas condições de voo hover e cruzeiro e o controle da aeronave foi implementado através de uma estratégia de controle em cascata. Um controlador regulador linear quadrático com integração de estados (LQRI) foi utilizado para controlar as velocidades lineares e angulares da aeronave, enquanto que um controlador proporcional integral derivativo (PID) foi usado para controlar a posição e atitude da aeronave no espaço. A estratégia de controle adotada permitiu realizar o seguimento de trajetórias de forma satisfatória, mesmo na presença de perturbações atmosféricas.
publishDate 2021
dc.date.issued.fl_str_mv 2021-12-14
dc.date.accessioned.fl_str_mv 2022-02-01T14:01:23Z
dc.date.available.fl_str_mv 2022-02-01T14:01:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ARROYO, Alvaro Daniel Herrera. Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor. 2021. 139 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2021. DOI http://doi.org/10.14393/ufu.di.2021.716.
dc.identifier.uri.fl_str_mv https://repositorio.ufu.br/handle/123456789/34026
dc.identifier.doi.pt_BR.fl_str_mv http://doi.org/10.14393/ufu.di.2021.716
identifier_str_mv ARROYO, Alvaro Daniel Herrera. Modelagem, simulação e controle de uma nova proposta de aeronave tricóptero tilt-wing-coaxial-rotor. 2021. 139 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2021. DOI http://doi.org/10.14393/ufu.di.2021.716.
url https://repositorio.ufu.br/handle/123456789/34026
http://doi.org/10.14393/ufu.di.2021.716
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Engenharia Elétrica
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Uberlândia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
bitstream.url.fl_str_mv https://repositorio.ufu.br/bitstream/123456789/34026/1/ModelagemSimula%c3%a7%c3%a3oControle.pdf
https://repositorio.ufu.br/bitstream/123456789/34026/2/license_rdf
https://repositorio.ufu.br/bitstream/123456789/34026/3/license.txt
https://repositorio.ufu.br/bitstream/123456789/34026/4/ModelagemSimula%c3%a7%c3%a3oControle.pdf.txt
https://repositorio.ufu.br/bitstream/123456789/34026/5/ModelagemSimula%c3%a7%c3%a3oControle.pdf.jpg
bitstream.checksum.fl_str_mv 71fec4ae078f434c44c7b932ee388b20
9868ccc48a14c8d591352b6eaf7f6239
48ded82ce41b8d2426af12aed6b3cbf3
4f0c8322e60d9e22375cba4461c939bf
8e46f6fd9c321dbf9877f7e14c99d1a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1802110399061950464