Structural and aeroelastic design optimization of truss-based modular wing structures
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/35311 http://doi.org/10.14393/ufu.te.2022.345 |
Resumo: | This work studies a new design approach and structural and aeroelastic optimization of wings using truss-based modular structures. Due to pollutant emission reduction targets and the high demand for increasingly lighter and more efficient aircraft, this research topic has become very relevant today, becoming a relevant contribution to new approaches to aeronautical design. In this context, the idea of using modular structures comes with the promise of efficient manufacturing and reduced maintenance costs. Thus, the work proposes a new approach to structural topology, eliminating traditional elements, such as spars and ribs, and replacing them with modular truss-based structures, which are connected by spherical joints at their ends. The topological mesh of the structures are created from the Delaunay triangulation and tessellation. The structural model is based on two types of finite elements: beam and quadrilateral elements. The beam elements are defined from consistent Timoshenko elements and the quadrilaterals are based on Mindlin-Reissner kinematics using bi-linear interpolation and reduced integration to prevent shear locking. The Doublet-Lattice Method is used to predict the unsteady subsonic aerodynamics, and the P-K method is used to compute the aeroelastic system solution. For the examples and case studies, a reference wing geometry from the FLEXOP project is used as a baseline. Two optimizations are proposed, where in all the objective functions are to minimize the structural weight of the wing and to maximize the flutter speed. The first optimization has as design variables the number of control points, or nodes, in each airfoil and the number of sections along the span. In the second optimization, the external diameters and thicknesses of each of the modular structures are individually optimized, even eliminating unnecessary ones. The results show that it is possible to obtain relatively light wings that meet the structural and aeroelastic requirements; however, the definition of the optimization parameters directly influence the mesh generation and computational cost of the optimization. Above all, modular structures have proved to be a good strategy in the design of structures for new wing concepts. |
id |
UFU_b8c8e9a0eec07cf255a18e7450d70fe6 |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/35311 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Structural and aeroelastic design optimization of truss-based modular wing structuresProjeto e otimização estrutural e aeroelástica de asas treliçadas e formadas por estruturas modularesWing designModular structuresDelaunay TriangulationDoublet lattice methodOptimizationProjeto de asaEstruturas modularesTriangulação de DelaunayMétodo doublet latticeOtimizaçãoEngenharia mecânicaCNPQ::ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOSCNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::AEROELASTICIDADECNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::PROJETO DE ESTRUTURAS AEROESPACIAISEngenharia MecânicaAeronavesAviões - AerodinâmicaThis work studies a new design approach and structural and aeroelastic optimization of wings using truss-based modular structures. Due to pollutant emission reduction targets and the high demand for increasingly lighter and more efficient aircraft, this research topic has become very relevant today, becoming a relevant contribution to new approaches to aeronautical design. In this context, the idea of using modular structures comes with the promise of efficient manufacturing and reduced maintenance costs. Thus, the work proposes a new approach to structural topology, eliminating traditional elements, such as spars and ribs, and replacing them with modular truss-based structures, which are connected by spherical joints at their ends. The topological mesh of the structures are created from the Delaunay triangulation and tessellation. The structural model is based on two types of finite elements: beam and quadrilateral elements. The beam elements are defined from consistent Timoshenko elements and the quadrilaterals are based on Mindlin-Reissner kinematics using bi-linear interpolation and reduced integration to prevent shear locking. The Doublet-Lattice Method is used to predict the unsteady subsonic aerodynamics, and the P-K method is used to compute the aeroelastic system solution. For the examples and case studies, a reference wing geometry from the FLEXOP project is used as a baseline. Two optimizations are proposed, where in all the objective functions are to minimize the structural weight of the wing and to maximize the flutter speed. The first optimization has as design variables the number of control points, or nodes, in each airfoil and the number of sections along the span. In the second optimization, the external diameters and thicknesses of each of the modular structures are individually optimized, even eliminating unnecessary ones. The results show that it is possible to obtain relatively light wings that meet the structural and aeroelastic requirements; however, the definition of the optimization parameters directly influence the mesh generation and computational cost of the optimization. Above all, modular structures have proved to be a good strategy in the design of structures for new wing concepts.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoTese (Doutorado)Este trabalho estuda uma nova abordagem de projeto e otimização estrutural e aeroelástica de asas utilizando estruturas modulares do tipo treliça. Em virtude das metas de redução de emissão de poluentes e da alta demanda por aeronaves cada mais mais leves e eficientes, este tema de pesquisa tem se tornado muito relevante atualmente, se tornando uma contribuição relevante nas novas abordagens de projeto aeronáutico. Neste contexto, a ideia de utilização de estruturas modulares vem com a promessa de fabricação eficiente e custos de manutenção reduzidos. Assim, o trabalho propõe uma nova abordagem de topologia estrutural, eliminando os elementos tradicionais, como longarinas e nervuras, e substituindo por estruturas modulares do tipo treliça, que são conectadas por juntas esféricas em suas extremidades. A malha topológica das estruturas são criadas a partir da triangulação e tesselagem de Delaunay. O modelo estrutural é baseado em dois tipos de elementos finitos: elementos de viga e quadriláteros. Os elementos de viga são definidos a partir dos elementos consistentes de Timoshenko e os quadriláteros são baseados na cinemática Mindlin-Reissner usando interpolação bilinear e integração reduzida para evitar shear locking. O Método Doublet-Lattice é usado para calcular a aerodinâmica subsônica não estacionária, e o método P-K é usado para calcular a solução do sistema aeroelástico. Para exemplos e estudos de caso, é utilizada a geometria da asa do FLEXOP como referência para as dimensões. São propostas três otimizações, onde em todas as funções objetivos são minimizar o peso estrutural da asa e maximizar a velocidade de flutter. A primeira otimização tem como variáveis de projeto o número de pontos de controles, ou nós, em cada aerofólio e o número de seções ao longo da envergadura. Na segunda otimização, são otimizados individualmente os diâmetros externos e espessuras de cada uma das estruturas modulares, podendo, inclusive, eliminar aquelas desnessárias. Os resultados mostram que é possível obter asas relativamente leves e que atendam aos requisitos estruturais e aeroelásticos; todavia, a definição dos parâmetros de otimização influenciam diretamente na geração da malha e custo computacional da otimização. Sobretudo, as estruturas modulares têm se mostrado uma boa estratégia no projeto estruturas de novos conceitos de asa.2024-07-15Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia MecânicaCastro, Saullo Giovani Pereirahttp://lattes.cnpq.br/6730194954643430Guimarães, Thiago Augusto Machadohttp://lattes.cnpq.br/0859338195145281Aldemir Aparecido, Cavalini Júniorhttp://lattes.cnpq.br/0387727577180664Pereira, Daniel de Almeidahttp://lattes.cnpq.br/2315205082874164Souza, Francisco José dehttp://lattes.cnpq.br/1257320066520278Sanches, Leonardohttp://lattes.cnpq.br/6978425622746671Pedras, Marcos Heinzelmann Junqueirahttp://lattes.cnpq.br/8695485336072583Silva, Higor Luis2022-07-27T13:59:55Z2022-07-27T13:59:55Z2022-07-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSILVA, Higor Luis. Structural and aeroelastic design and optimization of truss-based modular wing structures. 2022. 179 f. Tese (Doutorado em Engenharia Mecânica) - Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.345.https://repositorio.ufu.br/handle/123456789/35311http://doi.org/10.14393/ufu.te.2022.345enghttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-08-05T14:24:38Zoai:repositorio.ufu.br:123456789/35311Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-08-05T14:24:38Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Structural and aeroelastic design optimization of truss-based modular wing structures Projeto e otimização estrutural e aeroelástica de asas treliçadas e formadas por estruturas modulares |
title |
Structural and aeroelastic design optimization of truss-based modular wing structures |
spellingShingle |
Structural and aeroelastic design optimization of truss-based modular wing structures Silva, Higor Luis Wing design Modular structures Delaunay Triangulation Doublet lattice method Optimization Projeto de asa Estruturas modulares Triangulação de Delaunay Método doublet lattice Otimização Engenharia mecânica CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::AEROELASTICIDADE CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::PROJETO DE ESTRUTURAS AEROESPACIAIS Engenharia Mecânica Aeronaves Aviões - Aerodinâmica |
title_short |
Structural and aeroelastic design optimization of truss-based modular wing structures |
title_full |
Structural and aeroelastic design optimization of truss-based modular wing structures |
title_fullStr |
Structural and aeroelastic design optimization of truss-based modular wing structures |
title_full_unstemmed |
Structural and aeroelastic design optimization of truss-based modular wing structures |
title_sort |
Structural and aeroelastic design optimization of truss-based modular wing structures |
author |
Silva, Higor Luis |
author_facet |
Silva, Higor Luis |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castro, Saullo Giovani Pereira http://lattes.cnpq.br/6730194954643430 Guimarães, Thiago Augusto Machado http://lattes.cnpq.br/0859338195145281 Aldemir Aparecido, Cavalini Júnior http://lattes.cnpq.br/0387727577180664 Pereira, Daniel de Almeida http://lattes.cnpq.br/2315205082874164 Souza, Francisco José de http://lattes.cnpq.br/1257320066520278 Sanches, Leonardo http://lattes.cnpq.br/6978425622746671 Pedras, Marcos Heinzelmann Junqueira http://lattes.cnpq.br/8695485336072583 |
dc.contributor.author.fl_str_mv |
Silva, Higor Luis |
dc.subject.por.fl_str_mv |
Wing design Modular structures Delaunay Triangulation Doublet lattice method Optimization Projeto de asa Estruturas modulares Triangulação de Delaunay Método doublet lattice Otimização Engenharia mecânica CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::AEROELASTICIDADE CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::PROJETO DE ESTRUTURAS AEROESPACIAIS Engenharia Mecânica Aeronaves Aviões - Aerodinâmica |
topic |
Wing design Modular structures Delaunay Triangulation Doublet lattice method Optimization Projeto de asa Estruturas modulares Triangulação de Delaunay Método doublet lattice Otimização Engenharia mecânica CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::AEROELASTICIDADE CNPQ::ENGENHARIAS::ENGENHARIA AEROESPACIAL::ESTRUTURAS AEROESPACIAIS::PROJETO DE ESTRUTURAS AEROESPACIAIS Engenharia Mecânica Aeronaves Aviões - Aerodinâmica |
description |
This work studies a new design approach and structural and aeroelastic optimization of wings using truss-based modular structures. Due to pollutant emission reduction targets and the high demand for increasingly lighter and more efficient aircraft, this research topic has become very relevant today, becoming a relevant contribution to new approaches to aeronautical design. In this context, the idea of using modular structures comes with the promise of efficient manufacturing and reduced maintenance costs. Thus, the work proposes a new approach to structural topology, eliminating traditional elements, such as spars and ribs, and replacing them with modular truss-based structures, which are connected by spherical joints at their ends. The topological mesh of the structures are created from the Delaunay triangulation and tessellation. The structural model is based on two types of finite elements: beam and quadrilateral elements. The beam elements are defined from consistent Timoshenko elements and the quadrilaterals are based on Mindlin-Reissner kinematics using bi-linear interpolation and reduced integration to prevent shear locking. The Doublet-Lattice Method is used to predict the unsteady subsonic aerodynamics, and the P-K method is used to compute the aeroelastic system solution. For the examples and case studies, a reference wing geometry from the FLEXOP project is used as a baseline. Two optimizations are proposed, where in all the objective functions are to minimize the structural weight of the wing and to maximize the flutter speed. The first optimization has as design variables the number of control points, or nodes, in each airfoil and the number of sections along the span. In the second optimization, the external diameters and thicknesses of each of the modular structures are individually optimized, even eliminating unnecessary ones. The results show that it is possible to obtain relatively light wings that meet the structural and aeroelastic requirements; however, the definition of the optimization parameters directly influence the mesh generation and computational cost of the optimization. Above all, modular structures have proved to be a good strategy in the design of structures for new wing concepts. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-27T13:59:55Z 2022-07-27T13:59:55Z 2022-07-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVA, Higor Luis. Structural and aeroelastic design and optimization of truss-based modular wing structures. 2022. 179 f. Tese (Doutorado em Engenharia Mecânica) - Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.345. https://repositorio.ufu.br/handle/123456789/35311 http://doi.org/10.14393/ufu.te.2022.345 |
identifier_str_mv |
SILVA, Higor Luis. Structural and aeroelastic design and optimization of truss-based modular wing structures. 2022. 179 f. Tese (Doutorado em Engenharia Mecânica) - Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2022.345. |
url |
https://repositorio.ufu.br/handle/123456789/35311 http://doi.org/10.14393/ufu.te.2022.345 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Mecânica |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Mecânica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711289786040320 |