Produção de Ficocianina de Nostoc sp. e Anabena variabilis e recuperação por sistemas aquosos bifásicos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/33872 http://doi.org/10.14393/ufu.di.2020.748 |
Resumo: | Cyanobacteria are organisms capable of producing a diversity of biocomposites with high added value, including phycobiliproteins (PBP), which are pigments used as natural dyes for food and cosmetic products, as well as molecular fluorescent markers. This work aimed to study the process of production and recovery of PBP from cyanobacteria, Nostoc sp. and Anabaena variabilis. The only PBP detected in the extract of both strains was phycocyanin (PC). The medium of cyanobacteria was modified to evaluate the effect of the concentration of carbon source (glucose) and nitrogen source (sodium nitrate) and the effect of color (white, yellow, blue, green and red) on biomass growth and PC synthesis. For the PC recovery stage, the aqueous two-phase system (ATPS) was chosen, as an attractive technique for biomolecules, as it presents a large amount of water in both phases, providing a non-toxic and compatible environment. In this sense, the effect of adding NaCl to ATPS of PEG-potassium phosphate on PC recovery was evaluated. Furthermore, it was also tested ATPS using tri-block copolymers of different chains of PEO (poly (ethylene oxide)) (F68, L62 and L64) and the type of salt (sodium citrate and potassium phosphate) in different proportions, to test the increase in PC recovery and initial purity. Copolymers are thermo-sensitive and can be recovered and reused by heating, different from PEG. Thus, recovery was also evaluated by terms of separation of the copolymers used. In respect to the effect of cultivation parameters, the best result was found in supplementing the medium for the Nostoc sp. of 2 g.L-1 of glucose and 5 mM of sodium nitrate in a combined form, obtaining PC concentrations of 133.03 mg.g-1 and cell concentration of 0.53 g.L-1. Regarding the effect of the color of light, in general, using white light allowed the highest cell growth and when combined with the supplementation assay, it presented about 0.43 gL-1 for both strains studied after 14 days of cultivation. For the production of PC, under supplementation of the medium, the red light showed better response for both strains, equivalent to 141.97 mg.g-1 for Nostoc sp. and 161.06 mg.g-1 for A. variabilis. The study of PC recovery by ATPS, indicated the positive effect of “salting-out” with the addition of sodium chloride (NaCl), with 6% (w/w) being the best condition for Nostoc sp., Reaching purity (P) of 1,13, recovery (R) of 84.5% and partition coefficient (K) equal to 9.46. As for A. variabilis, the best conditions were for adding 6 and 8% (w/w), reaching (P) 1.16, (R) 83.35% and (K) 9.80. For ATPS of the copolymer-salt type, and 25% copolymer and 8% salt ratio, L64 + potassium phosphate was the best system for the recovery of PC from the extracts of the two strains, with the protein partitioning occurring in the bottom phase, reaching (R) equivalent to 83.40% for Nostoc sp. and 86.76% for A. variabilis. In the second proportion, 15% copolymer and 12% salt, the PC migrated to the top phase, with the F68 + potassium phosphate system providing a better result for both strains, reaching (R) of 86.46% for Nostoc sp. and 86.83% for A. variabilis. In the step of recovering the copolymer by thermal separation, it was possible to recover L62 (94.50%) and L64 (96.54%). For the F68 copolymer, there was no phase separation in the tested temperature range. The study showed that higher levels of phycocyanin can be obtained by modifying the medium of cyanobacteria, especially with the supplementation of carbon and nitrogen sources, and that the recovery of this pigment is viable by ATPS, both for PEG and copolymer media. |
id |
UFU_d09c7174bf7e3007d1ec13dbd152b6c9 |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/33872 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Produção de Ficocianina de Nostoc sp. e Anabena variabilis e recuperação por sistemas aquosos bifásicosPhycocyanin production from Nostoc sp. and Anabena variabilis and recovery by aqueous two-phase systemsficobiliproteínaphycobiliproteincopolímerocopolymerfonte de carbonocarbon sourcefonte de nitrogênionitrogen sourcebiomassabiomasspartiçãopartitionCNPQ::ENGENHARIASEngenharia químicaCopolímerosBiomassaCyanobacteria are organisms capable of producing a diversity of biocomposites with high added value, including phycobiliproteins (PBP), which are pigments used as natural dyes for food and cosmetic products, as well as molecular fluorescent markers. This work aimed to study the process of production and recovery of PBP from cyanobacteria, Nostoc sp. and Anabaena variabilis. The only PBP detected in the extract of both strains was phycocyanin (PC). The medium of cyanobacteria was modified to evaluate the effect of the concentration of carbon source (glucose) and nitrogen source (sodium nitrate) and the effect of color (white, yellow, blue, green and red) on biomass growth and PC synthesis. For the PC recovery stage, the aqueous two-phase system (ATPS) was chosen, as an attractive technique for biomolecules, as it presents a large amount of water in both phases, providing a non-toxic and compatible environment. In this sense, the effect of adding NaCl to ATPS of PEG-potassium phosphate on PC recovery was evaluated. Furthermore, it was also tested ATPS using tri-block copolymers of different chains of PEO (poly (ethylene oxide)) (F68, L62 and L64) and the type of salt (sodium citrate and potassium phosphate) in different proportions, to test the increase in PC recovery and initial purity. Copolymers are thermo-sensitive and can be recovered and reused by heating, different from PEG. Thus, recovery was also evaluated by terms of separation of the copolymers used. In respect to the effect of cultivation parameters, the best result was found in supplementing the medium for the Nostoc sp. of 2 g.L-1 of glucose and 5 mM of sodium nitrate in a combined form, obtaining PC concentrations of 133.03 mg.g-1 and cell concentration of 0.53 g.L-1. Regarding the effect of the color of light, in general, using white light allowed the highest cell growth and when combined with the supplementation assay, it presented about 0.43 gL-1 for both strains studied after 14 days of cultivation. For the production of PC, under supplementation of the medium, the red light showed better response for both strains, equivalent to 141.97 mg.g-1 for Nostoc sp. and 161.06 mg.g-1 for A. variabilis. The study of PC recovery by ATPS, indicated the positive effect of “salting-out” with the addition of sodium chloride (NaCl), with 6% (w/w) being the best condition for Nostoc sp., Reaching purity (P) of 1,13, recovery (R) of 84.5% and partition coefficient (K) equal to 9.46. As for A. variabilis, the best conditions were for adding 6 and 8% (w/w), reaching (P) 1.16, (R) 83.35% and (K) 9.80. For ATPS of the copolymer-salt type, and 25% copolymer and 8% salt ratio, L64 + potassium phosphate was the best system for the recovery of PC from the extracts of the two strains, with the protein partitioning occurring in the bottom phase, reaching (R) equivalent to 83.40% for Nostoc sp. and 86.76% for A. variabilis. In the second proportion, 15% copolymer and 12% salt, the PC migrated to the top phase, with the F68 + potassium phosphate system providing a better result for both strains, reaching (R) of 86.46% for Nostoc sp. and 86.83% for A. variabilis. In the step of recovering the copolymer by thermal separation, it was possible to recover L62 (94.50%) and L64 (96.54%). For the F68 copolymer, there was no phase separation in the tested temperature range. The study showed that higher levels of phycocyanin can be obtained by modifying the medium of cyanobacteria, especially with the supplementation of carbon and nitrogen sources, and that the recovery of this pigment is viable by ATPS, both for PEG and copolymer media.Dissertação (Mestrado)As cianobactérias são organismos capazes de produzir uma diversidade de biocompostos de alto valor agregado, dentre eles, as ficobiliproteínas (FBP), pigmentos usados como corantes naturais para alimentos e produtos cosméticos, bem como marcadores fluorescentes moleculares. Este trabalho teve como objetivo o estudo do processo de produção e recuperação de FBP das cianobactérias, Nostoc sp. e Anabaena variabilis. Das FBPs, apenas ficocianina (FC), foi detectada no extrato de ambas as cepas. O meio de cultivo das cianobactérias foi modificado para avaliar o efeito da concentração de fonte de carbono (glicose) e da fonte de nitrogênio (nitrato de sódio) e do efeito da cor (branca, amarela, azul, verde e vermelha) sobre o crescimento de biomassa e de síntese da FC. Para a etapa de recuperação da FC, foi escolhido o sistema aquoso bifásico (SAB), técnica atrativa para biomoléculas, por apresentar grande quantidade de água nas duas fases, proporcionando um ambiente não tóxico e compatível. Neste sentido, foram avaliados o efeito da adição do NaCl ao SAB do tipo PEG-fosfato de potássio, na recuperação da FC. Além disso, investigou-se também o SAB empregando copolímeros tri-bloco de diferentes cadeias de PEO (poli (óxido de etileno)) (F68, L62 e L64) e o tipo de sal (citrato de sódio e fosfato de potássio) em diferentes proporções, para testar o aumento da recuperação e pureza inicial da FC. Os copolímeros são termossenssíveis, podendo ser recuperados e reutilizados por aquecimento, diferente do PEG. Assim, foi avaliada também a recuperação por termosseparação dos copolímeros utilizados. Na avaliação do efeito de parâmetros de cultivo, o melhor resultado foi encontrado na suplementação ao meio de cultivo para a cepa de Nostoc sp. de 2 g.L-1 de glicose e 5 mM de nitrato de sódio de forma combinada, obtendo concentrações de FC de 133,03 mg.g-1 e concentração celular de 0,53 g.L-1. Com relação ao efeito da cor da luz, de forma geral, a luz branca foi a cor que mais favoreceu o crescimento celular e quando combinada ao ensaio com suplementação, apresentou cerca de 0,43 g.L-1 para ambas as cepas estudadas após os 14 dias de cultivo. Para a produção de FC, na condição de suplementação do meio, a luz vermelha apresentou melhor resposta para as duas cepas, equivalentes a 141,97 mg.g-1 para Nostoc sp. e 161,06 mg.g-1 para A. variabilis. O estudo de recuperação da FC por SAB, indicou o efeito positivo do “salting-out” com a adição de cloreto de sódio (NaCl), com 6% (m/m) sendo a melhor condição para Nostoc sp., atingindo pureza (P) de 1,13, recuperação (R) de 84,5% e coeficiente de partição (K) igual a 9,46. Já para A. variabilis, as melhores condições foram para adição de 6 e 8% (m/m), atingindo (P) de 1,16, (R) de 83,35% e (K) de 9,80. Para o SAB do tipo copolímero-sal, e proporção 25% copolímero e 8% sal, L64+fosfato de potássio foi o melhor sistema para a recuperação da FC dos extratos das duas cepas, sendo que ocorreu a partição da proteína na fase fundo, alcançando (R) equivalente a 83,40% para cepa de Nostoc sp. e 86,76 % para A. variabilis. Ao alterar a proporção para 15% copolímero e 12% sal, a FC migrou para a fase topo, sendo que o sistema F68+fosfato de potássio possibilitou melhor resultado para as duas cepas, alcançando (R) de 86,46% para Nostoc sp. e 86,83% para A. variabilis. Na etapa de recuperação do copolímero por termosseparação, foi possível recuperar o L62 (94,50%) e o L64 (96,54%). Para o copolímero F68, não houve separação de fases na faixa de temperatura testada. O estudo mostrou que maiores teores de ficocianina podem ser obtidos ao modificar o meio de cultura das cianobactérias, principalmente com a suplementação de fontes de carbono e nitrogênio, e que a recuperação deste pigmento é viável por SAB, tanto para meios constituídos de PEG como copolímeros.2022-11-19Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia QuímicaRibeiro, Eloízio Júliohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721952Y1Ferreira, Juliana de Souzahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4769290P1Watanabe, Érika OhtaxBatista, Fabiana Regina XavierxTeixeira, Gustavo AraújoTeixeira, Thales Azevedo2021-12-28T14:56:14Z2021-12-28T14:56:14Z2020-11-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfTEIXEIRA, Thales Azevedo. Produção de Ficocianina de Nostoc sp e Anabaena variabilis e recuperação por sistemas aquosos bifásicos. 2020. 139 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, Uberlândia, 2021. DOI http://doi.org/10.14393/ufu.di.2020.748https://repositorio.ufu.br/handle/123456789/33872http://doi.org/10.14393/ufu.di.2020.748porhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2024-08-05T12:37:14Zoai:repositorio.ufu.br:123456789/33872Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2024-08-05T12:37:14Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Produção de Ficocianina de Nostoc sp. e Anabena variabilis e recuperação por sistemas aquosos bifásicos Phycocyanin production from Nostoc sp. and Anabena variabilis and recovery by aqueous two-phase systems |
title |
Produção de Ficocianina de Nostoc sp. e Anabena variabilis e recuperação por sistemas aquosos bifásicos |
spellingShingle |
Produção de Ficocianina de Nostoc sp. e Anabena variabilis e recuperação por sistemas aquosos bifásicos Teixeira, Thales Azevedo ficobiliproteína phycobiliprotein copolímero copolymer fonte de carbono carbon source fonte de nitrogênio nitrogen source biomassa biomass partição partition CNPQ::ENGENHARIAS Engenharia química Copolímeros Biomassa |
title_short |
Produção de Ficocianina de Nostoc sp. e Anabena variabilis e recuperação por sistemas aquosos bifásicos |
title_full |
Produção de Ficocianina de Nostoc sp. e Anabena variabilis e recuperação por sistemas aquosos bifásicos |
title_fullStr |
Produção de Ficocianina de Nostoc sp. e Anabena variabilis e recuperação por sistemas aquosos bifásicos |
title_full_unstemmed |
Produção de Ficocianina de Nostoc sp. e Anabena variabilis e recuperação por sistemas aquosos bifásicos |
title_sort |
Produção de Ficocianina de Nostoc sp. e Anabena variabilis e recuperação por sistemas aquosos bifásicos |
author |
Teixeira, Thales Azevedo |
author_facet |
Teixeira, Thales Azevedo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ribeiro, Eloízio Júlio http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721952Y1 Ferreira, Juliana de Souza http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4769290P1 Watanabe, Érika Ohta x Batista, Fabiana Regina Xavier x Teixeira, Gustavo Araújo |
dc.contributor.author.fl_str_mv |
Teixeira, Thales Azevedo |
dc.subject.por.fl_str_mv |
ficobiliproteína phycobiliprotein copolímero copolymer fonte de carbono carbon source fonte de nitrogênio nitrogen source biomassa biomass partição partition CNPQ::ENGENHARIAS Engenharia química Copolímeros Biomassa |
topic |
ficobiliproteína phycobiliprotein copolímero copolymer fonte de carbono carbon source fonte de nitrogênio nitrogen source biomassa biomass partição partition CNPQ::ENGENHARIAS Engenharia química Copolímeros Biomassa |
description |
Cyanobacteria are organisms capable of producing a diversity of biocomposites with high added value, including phycobiliproteins (PBP), which are pigments used as natural dyes for food and cosmetic products, as well as molecular fluorescent markers. This work aimed to study the process of production and recovery of PBP from cyanobacteria, Nostoc sp. and Anabaena variabilis. The only PBP detected in the extract of both strains was phycocyanin (PC). The medium of cyanobacteria was modified to evaluate the effect of the concentration of carbon source (glucose) and nitrogen source (sodium nitrate) and the effect of color (white, yellow, blue, green and red) on biomass growth and PC synthesis. For the PC recovery stage, the aqueous two-phase system (ATPS) was chosen, as an attractive technique for biomolecules, as it presents a large amount of water in both phases, providing a non-toxic and compatible environment. In this sense, the effect of adding NaCl to ATPS of PEG-potassium phosphate on PC recovery was evaluated. Furthermore, it was also tested ATPS using tri-block copolymers of different chains of PEO (poly (ethylene oxide)) (F68, L62 and L64) and the type of salt (sodium citrate and potassium phosphate) in different proportions, to test the increase in PC recovery and initial purity. Copolymers are thermo-sensitive and can be recovered and reused by heating, different from PEG. Thus, recovery was also evaluated by terms of separation of the copolymers used. In respect to the effect of cultivation parameters, the best result was found in supplementing the medium for the Nostoc sp. of 2 g.L-1 of glucose and 5 mM of sodium nitrate in a combined form, obtaining PC concentrations of 133.03 mg.g-1 and cell concentration of 0.53 g.L-1. Regarding the effect of the color of light, in general, using white light allowed the highest cell growth and when combined with the supplementation assay, it presented about 0.43 gL-1 for both strains studied after 14 days of cultivation. For the production of PC, under supplementation of the medium, the red light showed better response for both strains, equivalent to 141.97 mg.g-1 for Nostoc sp. and 161.06 mg.g-1 for A. variabilis. The study of PC recovery by ATPS, indicated the positive effect of “salting-out” with the addition of sodium chloride (NaCl), with 6% (w/w) being the best condition for Nostoc sp., Reaching purity (P) of 1,13, recovery (R) of 84.5% and partition coefficient (K) equal to 9.46. As for A. variabilis, the best conditions were for adding 6 and 8% (w/w), reaching (P) 1.16, (R) 83.35% and (K) 9.80. For ATPS of the copolymer-salt type, and 25% copolymer and 8% salt ratio, L64 + potassium phosphate was the best system for the recovery of PC from the extracts of the two strains, with the protein partitioning occurring in the bottom phase, reaching (R) equivalent to 83.40% for Nostoc sp. and 86.76% for A. variabilis. In the second proportion, 15% copolymer and 12% salt, the PC migrated to the top phase, with the F68 + potassium phosphate system providing a better result for both strains, reaching (R) of 86.46% for Nostoc sp. and 86.83% for A. variabilis. In the step of recovering the copolymer by thermal separation, it was possible to recover L62 (94.50%) and L64 (96.54%). For the F68 copolymer, there was no phase separation in the tested temperature range. The study showed that higher levels of phycocyanin can be obtained by modifying the medium of cyanobacteria, especially with the supplementation of carbon and nitrogen sources, and that the recovery of this pigment is viable by ATPS, both for PEG and copolymer media. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-19 2021-12-28T14:56:14Z 2021-12-28T14:56:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
TEIXEIRA, Thales Azevedo. Produção de Ficocianina de Nostoc sp e Anabaena variabilis e recuperação por sistemas aquosos bifásicos. 2020. 139 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, Uberlândia, 2021. DOI http://doi.org/10.14393/ufu.di.2020.748 https://repositorio.ufu.br/handle/123456789/33872 http://doi.org/10.14393/ufu.di.2020.748 |
identifier_str_mv |
TEIXEIRA, Thales Azevedo. Produção de Ficocianina de Nostoc sp e Anabaena variabilis e recuperação por sistemas aquosos bifásicos. 2020. 139 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, Uberlândia, 2021. DOI http://doi.org/10.14393/ufu.di.2020.748 |
url |
https://repositorio.ufu.br/handle/123456789/33872 http://doi.org/10.14393/ufu.di.2020.748 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Química |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Química |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711288477417472 |