Processamento do extrato de chá verde (Camellia sinensis) aplicando filtração por membranas

Detalhes bibliográficos
Autor(a) principal: Bindes, Marlon Menezes Maciel
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/22077
http://dx.doi.org/10.14393/ufu.di.2018.1132
Resumo: The consumption of functional beverages and food has increased in the last years mainly due to people concerning about their health and well-being. Camellia sinensis leaves are traditionally used for infusion preparations. Furthermore, considering the high bioactive compounds concentration in its extracts, this herb has been catching the attention of researchers as well as of the food and pharmaceutical industries. Membrane filtration processes may be used for clarification, purification, and concentration of several products. From this point of view, this study focused on the green tea processing, including leaves characterization, extraction, clarification, and purification of polyphenols. In this sense, water was used as a solvent for extraction; macroscopic pre-treatments was applied for clarification (centrifugation and addition of coagulants agent, such as chitosan and Moringa oleífera seeds) and sequentially, a membrane filtration was employed for purification. Initially, the tea was ground, sifted and classified granulometrically. Then, different parameters were evaluated in order to find the best polyphenol extraction condition from tea leaves. The influence of the tea particle was analysed at 80ºC for 30 min for a water-to-tea ratio 50 g L-1 and a tea particle size (0.05-2.83 mm) besides unground leaves. The best tea particle size for polyphenols extraction was 0.15-0.74 mm and it was then used for all further conventional and ultrasound assisted extraction experiments. The optimum ratio was determined by extractions at 80ºC for 30 min with a tea-to-water ratio ranging from 10 to 120 g L-1. The impact of time and temperature on the conventional extraction of polyphenols was evaluated at 50 g L-1 tea-to-water ratio by ranging the time and the temperature from 10 to 120 min and from 40 to 90ºC respectively. Ultrasound-assisted extraction (UAE) consisted of two steps. In the first step of UAE, an experimental design using Response Surface Methodology (RSM) was performed with three replicates at the central point, orthogonality alpha of 1.3531 and at a significance level of 95%. For extraction time of 30 min, temperature, tea-to-water ratio, and amplitude ranged from 22 to 83ºC, 12 to 73 g L-1, 23 to 77% respectively. In the second step of UAE, using the best amplitude determined in step one (77%) and for a water-to-tea ratio 50 g L-1, similarly to conventional extraction, time and temperature varied from 10 to 120 min and from 40 to 90ºC respectively. The optimum extraction condition found in this study was 80ºC, 50 g L-1 for 60 min and a particle size (0.15-0.74 mm). Sequentially, the pre-treatments were performed: centrifugation (8000 rpm, 20 min), chitosan addition (0-2000 mg L-1) and Moringa oleífera seeds addition (0-10.000 mg L-1). Microfiltration processes were carried out at 0.8 bar applying a flat membrane of 0.22 µm and hollow fibres without coating coupled in a home-made cartridge. Microfiltration through hollow fibres without coating presented less polyphenol retention (2.33%), greater solids removal (4.23%), greater turbidity reduction (89.91%) and the greatest steady-state flux (19.37 L h-1m-2) comparatively to flat membrane of 0.22 μm. After the microfiltration processes, a sequential filtration was executed at 1.5 bar employing a home-made cartridge using hollow fibres with a polymeric coating. This sequential process achieved a steady-stead flux of 3.51 L h-1m-2 and a reduction of 9.17% of polyphenols, 12.89% de solids, 80.65% of turbidity and 16.92% of soluble solids (ºbrix). The obtained flux in each filtration process was used to calculate the fouling mechanism and the membrane resistance. In this way, fouling mechanisms (n) and pore resistance values (RP) found for flat membrane of 0.22 µm, hollow fibre without coating and for hollow fibre with coating were internal pore blocking (n=1.5) e (RP = 0.7 x 10-13), cake formation (n=0) e (Rc = 2.80 x 10-13) and intermediary pore blocking (n=1) e (RP = 7.38 x 10-13) respectively. Extract and permeates stability, stored at 5ºC for 30 days, were evaluated using as reference the parameters polyphenols concentration, turbidity and tea cream formation. Only the permeate obtained through filtration by the coated hollow fibre (S5) presented stability (turbidity value less than 4 NTU) and no formation of tea cream during the 30 days of storage at 5ºC. In conclusion, this study found the best polyphenol extraction conditions and proposed the utilisation of centrifugation for clarification followed by filtration through hollow fibres membranes without and with coating for green tea extract purification.
id UFU_df94126223c1e599e8ef18eddb3658cd
oai_identifier_str oai:repositorio.ufu.br:123456789/22077
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Processamento do extrato de chá verde (Camellia sinensis) aplicando filtração por membranasProcessing of green tea (Camellia sinensis) extract applying membrane filtrationCamellia sinensisChá verdePolifenóisExtraçãoClarificaçãoFiltração por membranasGreen teaPolyphenolsExtractionClarificationPurificationMembrane filtrationEngenharia químicaCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAThe consumption of functional beverages and food has increased in the last years mainly due to people concerning about their health and well-being. Camellia sinensis leaves are traditionally used for infusion preparations. Furthermore, considering the high bioactive compounds concentration in its extracts, this herb has been catching the attention of researchers as well as of the food and pharmaceutical industries. Membrane filtration processes may be used for clarification, purification, and concentration of several products. From this point of view, this study focused on the green tea processing, including leaves characterization, extraction, clarification, and purification of polyphenols. In this sense, water was used as a solvent for extraction; macroscopic pre-treatments was applied for clarification (centrifugation and addition of coagulants agent, such as chitosan and Moringa oleífera seeds) and sequentially, a membrane filtration was employed for purification. Initially, the tea was ground, sifted and classified granulometrically. Then, different parameters were evaluated in order to find the best polyphenol extraction condition from tea leaves. The influence of the tea particle was analysed at 80ºC for 30 min for a water-to-tea ratio 50 g L-1 and a tea particle size (0.05-2.83 mm) besides unground leaves. The best tea particle size for polyphenols extraction was 0.15-0.74 mm and it was then used for all further conventional and ultrasound assisted extraction experiments. The optimum ratio was determined by extractions at 80ºC for 30 min with a tea-to-water ratio ranging from 10 to 120 g L-1. The impact of time and temperature on the conventional extraction of polyphenols was evaluated at 50 g L-1 tea-to-water ratio by ranging the time and the temperature from 10 to 120 min and from 40 to 90ºC respectively. Ultrasound-assisted extraction (UAE) consisted of two steps. In the first step of UAE, an experimental design using Response Surface Methodology (RSM) was performed with three replicates at the central point, orthogonality alpha of 1.3531 and at a significance level of 95%. For extraction time of 30 min, temperature, tea-to-water ratio, and amplitude ranged from 22 to 83ºC, 12 to 73 g L-1, 23 to 77% respectively. In the second step of UAE, using the best amplitude determined in step one (77%) and for a water-to-tea ratio 50 g L-1, similarly to conventional extraction, time and temperature varied from 10 to 120 min and from 40 to 90ºC respectively. The optimum extraction condition found in this study was 80ºC, 50 g L-1 for 60 min and a particle size (0.15-0.74 mm). Sequentially, the pre-treatments were performed: centrifugation (8000 rpm, 20 min), chitosan addition (0-2000 mg L-1) and Moringa oleífera seeds addition (0-10.000 mg L-1). Microfiltration processes were carried out at 0.8 bar applying a flat membrane of 0.22 µm and hollow fibres without coating coupled in a home-made cartridge. Microfiltration through hollow fibres without coating presented less polyphenol retention (2.33%), greater solids removal (4.23%), greater turbidity reduction (89.91%) and the greatest steady-state flux (19.37 L h-1m-2) comparatively to flat membrane of 0.22 μm. After the microfiltration processes, a sequential filtration was executed at 1.5 bar employing a home-made cartridge using hollow fibres with a polymeric coating. This sequential process achieved a steady-stead flux of 3.51 L h-1m-2 and a reduction of 9.17% of polyphenols, 12.89% de solids, 80.65% of turbidity and 16.92% of soluble solids (ºbrix). The obtained flux in each filtration process was used to calculate the fouling mechanism and the membrane resistance. In this way, fouling mechanisms (n) and pore resistance values (RP) found for flat membrane of 0.22 µm, hollow fibre without coating and for hollow fibre with coating were internal pore blocking (n=1.5) e (RP = 0.7 x 10-13), cake formation (n=0) e (Rc = 2.80 x 10-13) and intermediary pore blocking (n=1) e (RP = 7.38 x 10-13) respectively. Extract and permeates stability, stored at 5ºC for 30 days, were evaluated using as reference the parameters polyphenols concentration, turbidity and tea cream formation. Only the permeate obtained through filtration by the coated hollow fibre (S5) presented stability (turbidity value less than 4 NTU) and no formation of tea cream during the 30 days of storage at 5ºC. In conclusion, this study found the best polyphenol extraction conditions and proposed the utilisation of centrifugation for clarification followed by filtration through hollow fibres membranes without and with coating for green tea extract purification.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)O consumo de bebidas e alimentos funcionais tem crescido no mundo nos últimos anos principalmente devido ao aumento da preocupação das pessoas com a saúde e o bem estar. As folhas da planta Camellia sinensis são tradicionalmente utilizadas para o preparo de infusões e, além disso, devido à alta concentração de compostos bioativos em seus extratos, essa erva tem chamado a atenção de pesquisadores e das indústrias alimentícia e farmacêutica. Os processos de filtração por membranas podem ser utilizados para clarificação, purificação e concentração de diversos produtos. Nessa perspectiva, este trabalho teve como objetivo o processamento do chá verde incluindo a caracterização das folhas, a extração, a clarificação e a purificação dos polifenóis presentes no chá usando água como solvente, pré-tratamentos macroscópicos para a clarificação (centrifugação e adição de agentes coagulantes - quitosana e sementes de Moringa oleífera) e, sequencialmente, filtração por membranas para purificação dos extratos. Inicialmente fez-se a moagem, o peneiramento e a classificação granulométrica das folhas de chá verde. A influência da granulometria na extração foi analisada em uma extração aquosa conduzida a 80ºC por 30 min a uma razão chá-água de 50 g L-1 utilizando folhas de chá com granulometria na faixa de 0,05-2,83 mm e também folhas de chá não moídas. A melhor granulometria para extração de polifenóis encontrada foi para a faixa de partículas de 0,15-0,74 mm e essa foi utilizada em todos os experimentos de extração convencional e com ultrassom subsequentes. O impacto da razão chá-água foi avaliado variando-a de 10 a 120 g L-1 para extrações a 80ºC por 30 min. Para a verificação do melhor tempo e da melhor temperatura na extração convencional, o preparo do chá foi realizado com uma razão chá-água de 50 g L-1, variando-se o tempo de 10 a 120 min e a temperatura de 40 a 90°C. A extração ultrassônica foi feita em duas etapas, na primeira etapa foi feito um planejamento composto central (PCC), com três réplicas no ponto central, com alfa de ortogonalidade igual a 1,3531, a um nível de significância de 95%. Para bateladas de 30 min variou-se a temperatura de 22 a 83ºC, a razão chá-água de 12 a 73 g L-1 e a amplitude de 23 a 77%. Na segunda etapa da extração ultrassônica, utilizou-se a razão chá-água de 50 g L-1, a melhor amplitude encontrada na primeira etapa (77%) e, similarmente à extração convencional, avaliou-se o efeito da temperatura em função do tempo variando-se o tempo de 10 a 120 min e a temperatura de 40 a 90ºC. A melhor condição de extração encontrada nesse trabalho foi a extração convencional a 80ºC, 50 g L-1 por 60 min utilizando partículas de chá na faixa (0,15-0,74 mm). Em seguida, avaliou-se como pré-tratamentos: centrifugação (8000 rpm, 20 min), adição de quitosana (0-2000 mg L-1) e adição de sementes de Moringa oleífera (SMO) (0-10.000 mg L-1). As microfiltrações foram feitas a 0,8 bar utilizando como alimentação o extrato centrifugado. Para tal empregou-se uma membrana plana de éster de celulose de 0,22 μm e um cartucho de membranas cerâmicas do tipo fibra-oca sem revestimento polimérico fabricado em laboratório. A microfiltração através das membranas do tipo fibra-oca sem revestimento apresentaram menor retenção de polifenóis (2,33%), maior retenção de sólidos (4,23%), maior redução da turbidez (89,91%) e maior fluxo estabilizado (19,37 L h-1m-2) em relação à membrana comercial plana de 0,22 μm. Posteriormente à microfiltração fez-se uma filtração sequencial empregando um cartucho com membranas de alumina do tipo fibra-oca com revestimento polimérico a 1,5 bar. Para esse processo obteve-se um fluxo estabilizado de 3,51 L h-1m-2, uma redução de 9,17% de polifenóis, 12,89% de sólidos, 80,65% da turbidez e 16,92% de sólidos solúveis (ºbrix). Os fluxos obtidos nas filtrações foram utilizados para calcular o mecanismo de fouling e para calcular as resistências das membranas. O mecanismo de fouling predominante (n) e o valor da resistência dos poros (RP) encontrados para a membrana plana de 0,22 µm, para a fibra oca sem revestimento e para fibra oca com revestimento foram bloqueio interno dos poros (n=1,5) e (RP = 0,7 x 10-13), formação de torta (n=0) e (Rc = 2,80 x 10-13) e bloqueio intermediário dos poros (n=1) e (RP = 7,38 x 10-13), respectivamente. Avaliou-se a estabilidade do extrato de alimentação e dos permeados das filtrações, quando armazenados por 30 dias à 5ºC, tomando como referência os parâmetros concentração de polifenóis, turbidez e formação de tea cream. Observou-se que apenas o permeado obtido através da filtração pela fibra oca revestida (S5) apresentou estabilidade (turbidez menor que 4 NTU) e sem a formação de tea cream ao longo dos 30 dias de armazenamento à 5ºC. Assim, este trabalho encontrou as melhores condições de extração de polifenóis presentes em folhas de chá verde e evidenciou a utilização de centrifugação para clarificação e a aplicação filtração com membranas de alumina do tipo fibra oca sem e com revestimento polimérico para purificação do extrato de chá de chá verde. O resultado final foi a produção do chá verde como uma bebida mais clarificada e estável.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia QuímicaReis, Miria Hespanhol Mirandahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4773556J4Cardoso, Vicelma Luizhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787074J7Taham, Tiagohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771750Y9de Oliveira, Eduardo Basíliohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4120917H3Bindes, Marlon Menezes Maciel2018-07-30T12:11:59Z2018-07-30T12:11:59Z2018-02-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfBINDES, Marlon Menezes Maciel. Processamento de extrato de chá verde (Camellia sinensis) aplicando filtração por membranas - Uberlândia. 2018. 125 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, 2018. DOI http://dx.doi.org/10.14393/ufu.di.2018.1132.https://repositorio.ufu.br/handle/123456789/22077http://dx.doi.org/10.14393/ufu.di.2018.1132porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2020-03-02T13:47:18Zoai:repositorio.ufu.br:123456789/22077Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2020-03-02T13:47:18Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Processamento do extrato de chá verde (Camellia sinensis) aplicando filtração por membranas
Processing of green tea (Camellia sinensis) extract applying membrane filtration
title Processamento do extrato de chá verde (Camellia sinensis) aplicando filtração por membranas
spellingShingle Processamento do extrato de chá verde (Camellia sinensis) aplicando filtração por membranas
Bindes, Marlon Menezes Maciel
Camellia sinensis
Chá verde
Polifenóis
Extração
Clarificação
Filtração por membranas
Green tea
Polyphenols
Extraction
Clarification
Purification
Membrane filtration
Engenharia química
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short Processamento do extrato de chá verde (Camellia sinensis) aplicando filtração por membranas
title_full Processamento do extrato de chá verde (Camellia sinensis) aplicando filtração por membranas
title_fullStr Processamento do extrato de chá verde (Camellia sinensis) aplicando filtração por membranas
title_full_unstemmed Processamento do extrato de chá verde (Camellia sinensis) aplicando filtração por membranas
title_sort Processamento do extrato de chá verde (Camellia sinensis) aplicando filtração por membranas
author Bindes, Marlon Menezes Maciel
author_facet Bindes, Marlon Menezes Maciel
author_role author
dc.contributor.none.fl_str_mv Reis, Miria Hespanhol Miranda
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4773556J4
Cardoso, Vicelma Luiz
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787074J7
Taham, Tiago
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771750Y9
de Oliveira, Eduardo Basílio
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4120917H3
dc.contributor.author.fl_str_mv Bindes, Marlon Menezes Maciel
dc.subject.por.fl_str_mv Camellia sinensis
Chá verde
Polifenóis
Extração
Clarificação
Filtração por membranas
Green tea
Polyphenols
Extraction
Clarification
Purification
Membrane filtration
Engenharia química
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
topic Camellia sinensis
Chá verde
Polifenóis
Extração
Clarificação
Filtração por membranas
Green tea
Polyphenols
Extraction
Clarification
Purification
Membrane filtration
Engenharia química
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description The consumption of functional beverages and food has increased in the last years mainly due to people concerning about their health and well-being. Camellia sinensis leaves are traditionally used for infusion preparations. Furthermore, considering the high bioactive compounds concentration in its extracts, this herb has been catching the attention of researchers as well as of the food and pharmaceutical industries. Membrane filtration processes may be used for clarification, purification, and concentration of several products. From this point of view, this study focused on the green tea processing, including leaves characterization, extraction, clarification, and purification of polyphenols. In this sense, water was used as a solvent for extraction; macroscopic pre-treatments was applied for clarification (centrifugation and addition of coagulants agent, such as chitosan and Moringa oleífera seeds) and sequentially, a membrane filtration was employed for purification. Initially, the tea was ground, sifted and classified granulometrically. Then, different parameters were evaluated in order to find the best polyphenol extraction condition from tea leaves. The influence of the tea particle was analysed at 80ºC for 30 min for a water-to-tea ratio 50 g L-1 and a tea particle size (0.05-2.83 mm) besides unground leaves. The best tea particle size for polyphenols extraction was 0.15-0.74 mm and it was then used for all further conventional and ultrasound assisted extraction experiments. The optimum ratio was determined by extractions at 80ºC for 30 min with a tea-to-water ratio ranging from 10 to 120 g L-1. The impact of time and temperature on the conventional extraction of polyphenols was evaluated at 50 g L-1 tea-to-water ratio by ranging the time and the temperature from 10 to 120 min and from 40 to 90ºC respectively. Ultrasound-assisted extraction (UAE) consisted of two steps. In the first step of UAE, an experimental design using Response Surface Methodology (RSM) was performed with three replicates at the central point, orthogonality alpha of 1.3531 and at a significance level of 95%. For extraction time of 30 min, temperature, tea-to-water ratio, and amplitude ranged from 22 to 83ºC, 12 to 73 g L-1, 23 to 77% respectively. In the second step of UAE, using the best amplitude determined in step one (77%) and for a water-to-tea ratio 50 g L-1, similarly to conventional extraction, time and temperature varied from 10 to 120 min and from 40 to 90ºC respectively. The optimum extraction condition found in this study was 80ºC, 50 g L-1 for 60 min and a particle size (0.15-0.74 mm). Sequentially, the pre-treatments were performed: centrifugation (8000 rpm, 20 min), chitosan addition (0-2000 mg L-1) and Moringa oleífera seeds addition (0-10.000 mg L-1). Microfiltration processes were carried out at 0.8 bar applying a flat membrane of 0.22 µm and hollow fibres without coating coupled in a home-made cartridge. Microfiltration through hollow fibres without coating presented less polyphenol retention (2.33%), greater solids removal (4.23%), greater turbidity reduction (89.91%) and the greatest steady-state flux (19.37 L h-1m-2) comparatively to flat membrane of 0.22 μm. After the microfiltration processes, a sequential filtration was executed at 1.5 bar employing a home-made cartridge using hollow fibres with a polymeric coating. This sequential process achieved a steady-stead flux of 3.51 L h-1m-2 and a reduction of 9.17% of polyphenols, 12.89% de solids, 80.65% of turbidity and 16.92% of soluble solids (ºbrix). The obtained flux in each filtration process was used to calculate the fouling mechanism and the membrane resistance. In this way, fouling mechanisms (n) and pore resistance values (RP) found for flat membrane of 0.22 µm, hollow fibre without coating and for hollow fibre with coating were internal pore blocking (n=1.5) e (RP = 0.7 x 10-13), cake formation (n=0) e (Rc = 2.80 x 10-13) and intermediary pore blocking (n=1) e (RP = 7.38 x 10-13) respectively. Extract and permeates stability, stored at 5ºC for 30 days, were evaluated using as reference the parameters polyphenols concentration, turbidity and tea cream formation. Only the permeate obtained through filtration by the coated hollow fibre (S5) presented stability (turbidity value less than 4 NTU) and no formation of tea cream during the 30 days of storage at 5ºC. In conclusion, this study found the best polyphenol extraction conditions and proposed the utilisation of centrifugation for clarification followed by filtration through hollow fibres membranes without and with coating for green tea extract purification.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-30T12:11:59Z
2018-07-30T12:11:59Z
2018-02-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BINDES, Marlon Menezes Maciel. Processamento de extrato de chá verde (Camellia sinensis) aplicando filtração por membranas - Uberlândia. 2018. 125 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, 2018. DOI http://dx.doi.org/10.14393/ufu.di.2018.1132.
https://repositorio.ufu.br/handle/123456789/22077
http://dx.doi.org/10.14393/ufu.di.2018.1132
identifier_str_mv BINDES, Marlon Menezes Maciel. Processamento de extrato de chá verde (Camellia sinensis) aplicando filtração por membranas - Uberlândia. 2018. 125 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, 2018. DOI http://dx.doi.org/10.14393/ufu.di.2018.1132.
url https://repositorio.ufu.br/handle/123456789/22077
http://dx.doi.org/10.14393/ufu.di.2018.1132
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Química
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Química
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1805569598670503936