Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias?

Detalhes bibliográficos
Autor(a) principal: Tavares, Rafael Marcão
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/37393
http://doi.org/10.14393/ufu.te.2023.61
Resumo: Mixtures practiced mixtures of chemical products in sprayer tanks hinder the correct positioning of application technology and cause incompatibilities between molecules. This work aimed to study tank mixtures, their physicochemical characteristics, spray droplet spectra and absorption of applied fungicide, in order to verify the impacts on application efficiency and disease control efficacy. The research was divided into three parts involving the soybean crop, in which fungicide and herbicide grouts plus adjuvants and foliar fertilizers were studied. We carried out visual tests of physical stability; pH, electrical conductivity and surface tension analysis; droplet spectrum analysis, using a laser particle analyzer; fungicide absorption evaluation by gas chromatography; evaluation of droplet deposition and losses to the soil, using a dye marker; and disease control efficacy evaluation, using a diagrammatic scale and yield attributes. A CO2 pressurized sprayer was used, TT110015 spray tips, application rate of 160 L ha-1 and working speed of 3.6 km h-1. In the first part of the research, physicochemical studies were performed with fungicide grouts (azoxystrobin + cyproconazole; trifloxystrobin + prothioconazole + bixafen; and mancozeb) in mixtures with glyphosate (potassium salt, ammonium salt and isopropylamine salt), adjuvants (mineral oil, propionic acid and orange oil) and foliar fertilizers (Mn chloride, Mn chelated in EDTA and Mn chelated in citric acid), and with glyphosate plus the same adjuvants or Mn. In the second part, besides physicochemical studies, droplet spectra and absorption of the fungicide azoxystrobin by soybean leaves were also evaluated using the following treatments: 1. azoxystrobin; 2. azoxystrobin + glyphosate; 3. azoxystrobin + mineral oil; 4. azoxystrobin + propionic acid; 5. azoxystrobin + orange oil. In these first two parts, the experiments were conducted in an entirely randomized design. In the third part of the research, the treatments from the previous part were repeated in order to evaluate management of end-of-cycle diseases (OFDs) of soybeans, with experiments conducted in duplicate in a randomized block design, on early and mid-cycle varieties. Only mancozeb was incompatible with glyphosate and Mn chloride. Glyphosate sources were incompatible with Mn chloride. Fungicide grouts tended toward neutral and alkaline pH ranges. Glyphosate, propionic acid, and Mn in citric acid were acidifying agents. Acidic grouts presented higher electrical conductivity. Adjuvants reduced surface tension. The sprays were classified with medium droplet spectrum. The azoxystrobin + glyphosate mixture was the most prone to drift losses and reduced fungicide uptake, which was increased in the grouts with adjuvants. The addition of mineral oil increased grout deposition, but did not prevent losses to the soil. The application of azoxystrobin was effective in managing OFDs. Mixing glyphosate with azoxystrobin is not recommended. Although the compositions of the products determine the physicochemical properties of the grouts, this does not explain their compatibilities in isolation. Tank mixtures affect the performance attributes studied about phytosanitary applications.
id UFU_ef81d09dbacf5e666da4df19e124bfe3
oai_identifier_str oai:repositorio.ufu.br:123456789/37393
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias?Do tank mixtures of products influence the performance of phytosanitary applications?mistura em tanqueazoxistrobinacalda fitossanitáriapropriedades físico-químicastank mixturesazoxystrobingroutphysicochemical propertiesCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIACNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADECNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAAgronomiaProdutos químicos agrícolas - AplicaçãoImplementos agrícolasPragas agrícolas - Controle biológicoProdutos agrícolas - ProcessamentoMixtures practiced mixtures of chemical products in sprayer tanks hinder the correct positioning of application technology and cause incompatibilities between molecules. This work aimed to study tank mixtures, their physicochemical characteristics, spray droplet spectra and absorption of applied fungicide, in order to verify the impacts on application efficiency and disease control efficacy. The research was divided into three parts involving the soybean crop, in which fungicide and herbicide grouts plus adjuvants and foliar fertilizers were studied. We carried out visual tests of physical stability; pH, electrical conductivity and surface tension analysis; droplet spectrum analysis, using a laser particle analyzer; fungicide absorption evaluation by gas chromatography; evaluation of droplet deposition and losses to the soil, using a dye marker; and disease control efficacy evaluation, using a diagrammatic scale and yield attributes. A CO2 pressurized sprayer was used, TT110015 spray tips, application rate of 160 L ha-1 and working speed of 3.6 km h-1. In the first part of the research, physicochemical studies were performed with fungicide grouts (azoxystrobin + cyproconazole; trifloxystrobin + prothioconazole + bixafen; and mancozeb) in mixtures with glyphosate (potassium salt, ammonium salt and isopropylamine salt), adjuvants (mineral oil, propionic acid and orange oil) and foliar fertilizers (Mn chloride, Mn chelated in EDTA and Mn chelated in citric acid), and with glyphosate plus the same adjuvants or Mn. In the second part, besides physicochemical studies, droplet spectra and absorption of the fungicide azoxystrobin by soybean leaves were also evaluated using the following treatments: 1. azoxystrobin; 2. azoxystrobin + glyphosate; 3. azoxystrobin + mineral oil; 4. azoxystrobin + propionic acid; 5. azoxystrobin + orange oil. In these first two parts, the experiments were conducted in an entirely randomized design. In the third part of the research, the treatments from the previous part were repeated in order to evaluate management of end-of-cycle diseases (OFDs) of soybeans, with experiments conducted in duplicate in a randomized block design, on early and mid-cycle varieties. Only mancozeb was incompatible with glyphosate and Mn chloride. Glyphosate sources were incompatible with Mn chloride. Fungicide grouts tended toward neutral and alkaline pH ranges. Glyphosate, propionic acid, and Mn in citric acid were acidifying agents. Acidic grouts presented higher electrical conductivity. Adjuvants reduced surface tension. The sprays were classified with medium droplet spectrum. The azoxystrobin + glyphosate mixture was the most prone to drift losses and reduced fungicide uptake, which was increased in the grouts with adjuvants. The addition of mineral oil increased grout deposition, but did not prevent losses to the soil. The application of azoxystrobin was effective in managing OFDs. Mixing glyphosate with azoxystrobin is not recommended. Although the compositions of the products determine the physicochemical properties of the grouts, this does not explain their compatibilities in isolation. Tank mixtures affect the performance attributes studied about phytosanitary applications.Pesquisa sem auxílio de agências de fomentoTese (Doutorado)Misturas de produtos químicos em tanques de pulverizadores, praticadas equivocadamente, dificultam posicionamentos corretos de tecnologia de aplicação e ocasionam incompatibilidades entre moléculas. Este trabalho objetivou estudar misturas em tanque, suas características físico-químicas, espectros de gotas pulverizadas e absorção de fungicida aplicado, a fim de verificar os impactos na eficiência de aplicação e na eficácia de controle de doenças. Dividiu-se a pesquisa em três partes envolvendo a cultura da soja, nas quais estudouse caldas fungicidas e herbicidas, acrescidas de adjuvantes e fertilizantes foliares. Realizou-se testes visuais de estabilidade física; análises de pH, condutividade elétrica e tensão superficial; análise do espectro de gotas, através de analisador de partículas por laser; avaliação de absorção de fungicida através de cromatografia gasosa; avaliação de deposição de calda e perdas para o solo, com corante marcador; e avaliação de eficácia de controle de doenças, por meio de escala diagramática e atributos de produtividade. Utilizou-se um pulverizador pressurizado por CO2, pontas de pulverização TT110015, taxa de aplicação de 160 L ha-1 e velocidade de trabalho de 3,6 km h-1. Na primeira parte da pesquisa, realizou-se estudos físico-químicos com caldas fungicidas (azoxistrobina + ciproconazol; trifloxistrobina + protioconazol + bixafen; e mancozebe) em misturas com glifosato (sal de potássio, sal de amônio e sal isopropilamina), adjuvantes (óleo mineral, ácido propiônico e óleo de laranja) e fertilizantes foliares (cloreto de Mn, Mn quelatizado em EDTA e Mn quelatizado em ácido cítrico) e com glifosato acrescidos dos mesmos adjuvantes ou Mn. Na segunda parte, além de estudos físico-químicos, avaliaram-se também espectros de gotas e absorção do fungicida azoxistrobina por folhas de soja, através dos tratamentos: 1. azoxistrobina; 2. azoxistrobina + glifosato; 3. azoxistrobina + óleo mineral; 4. azoxistrobina + ácido propiônico; 5. azoxistrobina + óleo de laranja. Nessas duas primeiras partes os experimentos foram conduzidos em delineamento inteiramente casualizado. Na terceira parte da pesquisa, repetiram-se os tratamentos da parte anterior, a fim de avaliar manejo de doenças de final de ciclo (DFCs) da soja, com experimentos em duplicata conduzidos em delineamento de blocos casualizados sobre variedades de ciclos precoce e médio. Apenas o mancozebe foi incompatível com o glifosato e com o cloreto de Mn. As fontes de glifosato foram incompatíveis com cloreto de Mn. Caldas fungicidas tenderam a faixas de pH neutro e alcalino. Glifosato, ácido propiônico e Mn em ácido cítrico foram agentes acidificantes. Caldas ácidas apresentaram maior condutividade elétrica. Adjuvantes reduziram as tensões superficiais. As pulverizações foram classificadas com espectro de gotas médias. A calda azoxistrobina + glifosato foi a mais propensa a perdas por deriva e reduziu a absorção do fungicida, a qual foi aumentada nas caldas com adjuvantes. O acréscimo de óleo mineral elevou a deposição das caldas, mas não evitou perdas para o solo. A aplicação de azoxistrobina foi eficaz no manejo de DFCs. Não é recomendável a mistura de glifosato com azoxistrobina. Apesar de as composições dos produtos determinarem as propriedades físicoquímicas das caldas, isso não explica isoladamente as suas compatibilidades. Misturas em tanque afetam os atributos de desempenho estudados acerca das aplicações fitossanitárias.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em AgronomiaCunha, João Paulo Arantes Rodrigues dahttp://lattes.cnpq.br/2050122023035025Alvarenga, Cleyton Batista dehttp://lattes.cnpq.br/6700553445159048Pereira, Igor Souzahttp://lattes.cnpq.br/0610814748801550Bueno, Mariana Rodrigueshttp://lattes.cnpq.br/6269505838494340Tebaldi, Nilvanira Donizetehttp://lattes.cnpq.br/0695770301548519Tavares, Rafael Marcão2023-03-02T18:18:25Z2023-03-02T18:18:25Z2022-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfTAVARES, Rafael Marcão. Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias? 2022. 114 f. Tese (Doutorado em Agronomia) – Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2023.61https://repositorio.ufu.br/handle/123456789/37393http://doi.org/10.14393/ufu.te.2023.61porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2023-03-03T06:17:23Zoai:repositorio.ufu.br:123456789/37393Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2023-03-03T06:17:23Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias?
Do tank mixtures of products influence the performance of phytosanitary applications?
title Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias?
spellingShingle Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias?
Tavares, Rafael Marcão
mistura em tanque
azoxistrobina
calda fitossanitária
propriedades físico-químicas
tank mixtures
azoxystrobin
grout
physicochemical properties
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
Agronomia
Produtos químicos agrícolas - Aplicação
Implementos agrícolas
Pragas agrícolas - Controle biológico
Produtos agrícolas - Processamento
title_short Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias?
title_full Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias?
title_fullStr Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias?
title_full_unstemmed Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias?
title_sort Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias?
author Tavares, Rafael Marcão
author_facet Tavares, Rafael Marcão
author_role author
dc.contributor.none.fl_str_mv Cunha, João Paulo Arantes Rodrigues da
http://lattes.cnpq.br/2050122023035025
Alvarenga, Cleyton Batista de
http://lattes.cnpq.br/6700553445159048
Pereira, Igor Souza
http://lattes.cnpq.br/0610814748801550
Bueno, Mariana Rodrigues
http://lattes.cnpq.br/6269505838494340
Tebaldi, Nilvanira Donizete
http://lattes.cnpq.br/0695770301548519
dc.contributor.author.fl_str_mv Tavares, Rafael Marcão
dc.subject.por.fl_str_mv mistura em tanque
azoxistrobina
calda fitossanitária
propriedades físico-químicas
tank mixtures
azoxystrobin
grout
physicochemical properties
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
Agronomia
Produtos químicos agrícolas - Aplicação
Implementos agrícolas
Pragas agrícolas - Controle biológico
Produtos agrícolas - Processamento
topic mistura em tanque
azoxistrobina
calda fitossanitária
propriedades físico-químicas
tank mixtures
azoxystrobin
grout
physicochemical properties
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
Agronomia
Produtos químicos agrícolas - Aplicação
Implementos agrícolas
Pragas agrícolas - Controle biológico
Produtos agrícolas - Processamento
description Mixtures practiced mixtures of chemical products in sprayer tanks hinder the correct positioning of application technology and cause incompatibilities between molecules. This work aimed to study tank mixtures, their physicochemical characteristics, spray droplet spectra and absorption of applied fungicide, in order to verify the impacts on application efficiency and disease control efficacy. The research was divided into three parts involving the soybean crop, in which fungicide and herbicide grouts plus adjuvants and foliar fertilizers were studied. We carried out visual tests of physical stability; pH, electrical conductivity and surface tension analysis; droplet spectrum analysis, using a laser particle analyzer; fungicide absorption evaluation by gas chromatography; evaluation of droplet deposition and losses to the soil, using a dye marker; and disease control efficacy evaluation, using a diagrammatic scale and yield attributes. A CO2 pressurized sprayer was used, TT110015 spray tips, application rate of 160 L ha-1 and working speed of 3.6 km h-1. In the first part of the research, physicochemical studies were performed with fungicide grouts (azoxystrobin + cyproconazole; trifloxystrobin + prothioconazole + bixafen; and mancozeb) in mixtures with glyphosate (potassium salt, ammonium salt and isopropylamine salt), adjuvants (mineral oil, propionic acid and orange oil) and foliar fertilizers (Mn chloride, Mn chelated in EDTA and Mn chelated in citric acid), and with glyphosate plus the same adjuvants or Mn. In the second part, besides physicochemical studies, droplet spectra and absorption of the fungicide azoxystrobin by soybean leaves were also evaluated using the following treatments: 1. azoxystrobin; 2. azoxystrobin + glyphosate; 3. azoxystrobin + mineral oil; 4. azoxystrobin + propionic acid; 5. azoxystrobin + orange oil. In these first two parts, the experiments were conducted in an entirely randomized design. In the third part of the research, the treatments from the previous part were repeated in order to evaluate management of end-of-cycle diseases (OFDs) of soybeans, with experiments conducted in duplicate in a randomized block design, on early and mid-cycle varieties. Only mancozeb was incompatible with glyphosate and Mn chloride. Glyphosate sources were incompatible with Mn chloride. Fungicide grouts tended toward neutral and alkaline pH ranges. Glyphosate, propionic acid, and Mn in citric acid were acidifying agents. Acidic grouts presented higher electrical conductivity. Adjuvants reduced surface tension. The sprays were classified with medium droplet spectrum. The azoxystrobin + glyphosate mixture was the most prone to drift losses and reduced fungicide uptake, which was increased in the grouts with adjuvants. The addition of mineral oil increased grout deposition, but did not prevent losses to the soil. The application of azoxystrobin was effective in managing OFDs. Mixing glyphosate with azoxystrobin is not recommended. Although the compositions of the products determine the physicochemical properties of the grouts, this does not explain their compatibilities in isolation. Tank mixtures affect the performance attributes studied about phytosanitary applications.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-17
2023-03-02T18:18:25Z
2023-03-02T18:18:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv TAVARES, Rafael Marcão. Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias? 2022. 114 f. Tese (Doutorado em Agronomia) – Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2023.61
https://repositorio.ufu.br/handle/123456789/37393
http://doi.org/10.14393/ufu.te.2023.61
identifier_str_mv TAVARES, Rafael Marcão. Misturas de produtos em tanque influenciam o desempenho das aplicações fitossanitárias? 2022. 114 f. Tese (Doutorado em Agronomia) – Universidade Federal de Uberlândia, Uberlândia, 2022. DOI http://doi.org/10.14393/ufu.te.2023.61
url https://repositorio.ufu.br/handle/123456789/37393
http://doi.org/10.14393/ufu.te.2023.61
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Agronomia
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Agronomia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1805569731745284096