Avaliação de processos de separação por membranas para concentração e fracionamento de lignina
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFU |
Texto Completo: | https://repositorio.ufu.br/handle/123456789/29045 http://doi.org/10.14393/ufu.di.2020.47 |
Resumo: | Lignin is a by-product of pulp and paper industries that has been generally used for power generation. However, biorefineries based on lignocellulosic materials have sought to develop high value-added renewable products from biomass processing, bringing advantages such as low cost and easy availability of the raw material. One way of recovering the lignin is by means of membrane separation processes. The main goal of this work was to determine the best operational conditions of the membrane filtration process for the concentration and fractionation of lignin present in liquid black liquor fractions. Micro and ultrafiltrations, in dead-end and cross-flow operations, with commercial polymeric and ceramic membranes, in sequential and direct processes, were employed to evaluate the fractionation capacity of different pretreated black liquor fractions, at different pH values, besides of powdered lignin solutions. The obtained permeates were characterized by total solids, soluble solids, lignin concentration, antioxidant potential, colorimetry, 13C NMR, GPC, FTIR-ATR and/or TGA. Microfiltration of the pH 9.0 liquid fraction was performed in dead-end in a 0.22 µm polymeric membrane, with a stabilized flux of 100 L h-1 m-2. The 0.22 µm membrane permeate was sequentially ultrafiltrated in a 5 kDa membrane, also in dead-end, with relatively low stabilized flux, 0.8 L h-1 m-2. Also, in dead-end operation, the liquid fraction was microfiltrated in a 0.05 µm membrane, after centrifugation, with a stabilized flux of 1.3 L h-1 m-2, followed by 10 kDa ultrafiltration, with a stabilized flux of 5.0 L h-1 m-2. Despite the higher flux in the 10 kDa membrane ultrafiltration, solids retention was 17%. In order to increase the permeate flux, a cross-flow ultrafiltration in a 5 kDa membrane was then performed. Although the initial flux increased, there was no significant increase in final cross-flow flux when compared to dead end (0.9 L h-1 m-2 versus 0.8 L h-1 m-2). By comparison, a powdered lignin solution at a concentration of 47 g L-1 was also ultrafiltrate in cross-flow in a 5kDa polymeric membrane. The final flux of this process was 16 L h-1 m-2 with 97% solids retention, and flux difference is probably associated with feed lower solids content. Proceeding in cross-flow operation, a commercial 20 kDa alumina ceramic membrane was tested for liquid fractions at three different pH values. The pH 9.0 and 9.5 fractions had the highest final fluxes, 5.4 and 5.5 L h-1 m-2, respectively, and presented the lowest total solids concentration, the pH 10.0 fraction presented the lowest flux, 2.2 L h-1 m-2 and the highest concentration of total solids. Ultrafiltration of the pH 9.0 fraction had the highest lignin retention among the tested fractions (83%), as well as clarified permeated in relation to the feed. GPC analysis confirmed lignin fractionation with membrane treatment, obtaining lignin with more homogeneous molecular mass in the permeate. The 20 kDa membrane was also tested for ultrafiltration of a 10% lignin powder solution with final flux of 6.7 L h-1 m-2 and 75% lignin retention. Thus, as in the polymeric membrane, the permeate flux for lignin solution is higher than with the liquid fractions, evidencing the influence of other compounds present in these fractions. Hollow fiber membranes were also tested for filtration of 10% lignin powder solution. The stabilized flux for dead-end in alumina hollow fibers was 2.3 L h-1 m-2 and for cross-flow in a composite alumina with dolomite hollow fiber was 10.3 L h-1 m-2. Despite the difference in flux both fibers retained only 13% of solids and presented poor lignin retention. Thus, the use of commercial 20 kDa ceramic membranes proves to be more operationally viable due to the obtained solids flow and retention values. The pH 9.00 liquid fraction is the most promising for lignin concentration due to its relatively high flow and high efficiency for lignin separation. |
id |
UFU_efd414bfc2a578f7164dd3e7e2036330 |
---|---|
oai_identifier_str |
oai:repositorio.ufu.br:123456789/29045 |
network_acronym_str |
UFU |
network_name_str |
Repositório Institucional da UFU |
repository_id_str |
|
spelling |
Avaliação de processos de separação por membranas para concentração e fracionamento de ligninaEvaluation of membrane separation processes for lignin concentration and fractionationLigninaConcentraçãoMembranasFraçõesRetençãoLigninMembranesFractionsRetentionConcentrationCNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICALignin is a by-product of pulp and paper industries that has been generally used for power generation. However, biorefineries based on lignocellulosic materials have sought to develop high value-added renewable products from biomass processing, bringing advantages such as low cost and easy availability of the raw material. One way of recovering the lignin is by means of membrane separation processes. The main goal of this work was to determine the best operational conditions of the membrane filtration process for the concentration and fractionation of lignin present in liquid black liquor fractions. Micro and ultrafiltrations, in dead-end and cross-flow operations, with commercial polymeric and ceramic membranes, in sequential and direct processes, were employed to evaluate the fractionation capacity of different pretreated black liquor fractions, at different pH values, besides of powdered lignin solutions. The obtained permeates were characterized by total solids, soluble solids, lignin concentration, antioxidant potential, colorimetry, 13C NMR, GPC, FTIR-ATR and/or TGA. Microfiltration of the pH 9.0 liquid fraction was performed in dead-end in a 0.22 µm polymeric membrane, with a stabilized flux of 100 L h-1 m-2. The 0.22 µm membrane permeate was sequentially ultrafiltrated in a 5 kDa membrane, also in dead-end, with relatively low stabilized flux, 0.8 L h-1 m-2. Also, in dead-end operation, the liquid fraction was microfiltrated in a 0.05 µm membrane, after centrifugation, with a stabilized flux of 1.3 L h-1 m-2, followed by 10 kDa ultrafiltration, with a stabilized flux of 5.0 L h-1 m-2. Despite the higher flux in the 10 kDa membrane ultrafiltration, solids retention was 17%. In order to increase the permeate flux, a cross-flow ultrafiltration in a 5 kDa membrane was then performed. Although the initial flux increased, there was no significant increase in final cross-flow flux when compared to dead end (0.9 L h-1 m-2 versus 0.8 L h-1 m-2). By comparison, a powdered lignin solution at a concentration of 47 g L-1 was also ultrafiltrate in cross-flow in a 5kDa polymeric membrane. The final flux of this process was 16 L h-1 m-2 with 97% solids retention, and flux difference is probably associated with feed lower solids content. Proceeding in cross-flow operation, a commercial 20 kDa alumina ceramic membrane was tested for liquid fractions at three different pH values. The pH 9.0 and 9.5 fractions had the highest final fluxes, 5.4 and 5.5 L h-1 m-2, respectively, and presented the lowest total solids concentration, the pH 10.0 fraction presented the lowest flux, 2.2 L h-1 m-2 and the highest concentration of total solids. Ultrafiltration of the pH 9.0 fraction had the highest lignin retention among the tested fractions (83%), as well as clarified permeated in relation to the feed. GPC analysis confirmed lignin fractionation with membrane treatment, obtaining lignin with more homogeneous molecular mass in the permeate. The 20 kDa membrane was also tested for ultrafiltration of a 10% lignin powder solution with final flux of 6.7 L h-1 m-2 and 75% lignin retention. Thus, as in the polymeric membrane, the permeate flux for lignin solution is higher than with the liquid fractions, evidencing the influence of other compounds present in these fractions. Hollow fiber membranes were also tested for filtration of 10% lignin powder solution. The stabilized flux for dead-end in alumina hollow fibers was 2.3 L h-1 m-2 and for cross-flow in a composite alumina with dolomite hollow fiber was 10.3 L h-1 m-2. Despite the difference in flux both fibers retained only 13% of solids and presented poor lignin retention. Thus, the use of commercial 20 kDa ceramic membranes proves to be more operationally viable due to the obtained solids flow and retention values. The pH 9.00 liquid fraction is the most promising for lignin concentration due to its relatively high flow and high efficiency for lignin separation.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas GeraisDissertação (Mestrado)A lignina é um subproduto das indústrias de papel e celulose. As biorrefinarias têm buscado desenvolver produtos renováveis de alto valor agregado a partir do processamento da biomassa Uma das maneiras de recuperar a lignina é por meio de processos de separação por membranas. Este trabalho teve como objetivo determinar as melhores condições operacionais do processo de filtração por membranas para a concentração e fracionamento de lignina presente em frações líquidas do licor negro. Micro e ultrafiltrações em operação dead-end e cross-flow, com membranas poliméricas e cerâmicas comerciais, em processos sequenciais e diretos, foram empregadas para avaliação da capacidade de fracionamento de diferentes frações de licor negro, em diferentes valores de pH, além de soluções de lignina em pó. Os permeados obtidos foram caracterizados por sólidos totais, sólidos solúveis, concentração de lignina, atividade antioxidante, colorimetria, Ressonância Magnética Nuclear (RMN) 13C, Cromatografia de permeação em gel (GPC), Espectroscopia no Infravermelho por Transformada de Fourier (FTIR-ATR) e/ou Análise Termogravimétrica (TGA). Realizou-se microfiltração da fração líquida pH 9,0, dead-end, em membrana polimérica de 0,22 µm com fluxo de 100 L h-1 m-2. O permeado da membrana de 0,22 µm foi sequencialmente ultrafiltrado em membrana de 5 kDa, também em dead-end, com relativo baixo fluxo final, 0,8 L h-1 m-2. Também em operação dead-end, fez-se a microfiltração da fração líquida em membrana de 0,05 µm após centrifugação, obtendo fluxo de 1,3 L h-1 m-2, seguida de ultrafiltração em membrana de 10 kDa, com fluxo de 5,0 L h-1 m-2. Apesar de maior fluxo na ultrafiltração em membrana de 10 kDa, a retenção de sólidos foi de 17%. A fim de aumentar o fluxo, fez-se então ultrafiltração em cross-flow em membrana 5 kDa. Apesar de ter aumentado o fluxo inicial, não se observou aumento significativo no fluxo em cross-flow quando comparado ao dead-end (0,9 L h-1 m-2 contra 0,8 L h-1 m-2). Ainda com a membrana polimérica de 5kDa em cross-flow, fez-se ultrafiltração de solução de lignina em pó com concentração de 47 g L-1. O fluxo final deste processo foi de 16,0 L h-1 m-2 com retenção de 97% de sólidos, sendo que a diferença de fluxo está provavelmente associada ao menor teor de sólidos da alimentação. Ainda em operação cross-flow, testou-se membrana cerâmica comercial de alumina de 20 kDa para frações líquidas de três diferentes valores de pH. As frações pH 9,0 e 9,5 tiveram os maiores fluxos finais, 5,4 e 5,5 L h-1 m-2, respectivamente, além de apresentarem menor concentração de sólidos totais, e a fração pH 10,0 o menor fluxo, de 2,2 L h-1 m-2 e maior concentração de sólidos totais. A ultrafiltração da fração pH 9,0 teve a maior retenção de lignina dentre as frações testadas (83%), além de permeado clarificado com relação à alimentação. A análise de GPC comprovou o fracionamento da lignina com o tratamento de membranas, obtendo lignina com massa molecular mais homogênea nos permeados. A membrana de 20 kDa também foi testada para ultrafiltração de solução de lignina em pó 10% com fluxo final de 6,7 L h-1 m-2 e retenção de lignina de 75%. Assim como na membrana polimérica, o fluxo de permeado com a solução de lignina em pó é maior do que com as frações líquidas, evidenciando a influência de demais compostos presente nessas frações no fluxo. Foram testadas ainda membranas do tipo fibra oca para filtração de solução de lignina em pó 10%. O fluxo para as fibras ocas de alumina em dead-end foi de 2,3 L h-1 m-2 e para as de alumina com dolomita em cross-flow foi de 10,3 L h-1 m-2. Apesar da diferença de fluxo ambas as fibras apresentaram redução de apenas 13% de sólidos e baixa retenção de lignina. Assim, o uso de membranas cerâmicas comerciais de 20 kDa mostra ser mais viável operacionalmente devido aos valores de fluxo e retenção de sólidos obtidos. A fração líquida pH 9,00 é a mais promissora para a concentração de lignina por apresentar relativo alto fluxo, e alta eficiência para separação de lignina.2022-01-24Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia QuímicaReis, Miria Hespanhol Mirandahttp://lattes.cnpq.br/2087228956469914Cardoso, Vicelma Luizhttp://lattes.cnpq.br/7947426011712250Pasquini, DanielMorais, Luis Carlos deLobosco, ViniciusMendes, Sophia Franciscani2020-03-25T22:26:10Z2020-03-25T22:26:10Z2020-01-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMENDES, Sophia Franciscani. Avaliação de processos de separação por membranas para concentração e fracionamento de lignina. 2020. 107 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, 2018. DOI http://doi.org/10.14393/ufu.di.2020.47.https://repositorio.ufu.br/handle/123456789/29045http://doi.org/10.14393/ufu.di.2020.47porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2022-10-18T13:50:53Zoai:repositorio.ufu.br:123456789/29045Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2022-10-18T13:50:53Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
dc.title.none.fl_str_mv |
Avaliação de processos de separação por membranas para concentração e fracionamento de lignina Evaluation of membrane separation processes for lignin concentration and fractionation |
title |
Avaliação de processos de separação por membranas para concentração e fracionamento de lignina |
spellingShingle |
Avaliação de processos de separação por membranas para concentração e fracionamento de lignina Mendes, Sophia Franciscani Lignina Concentração Membranas Frações Retenção Lignin Membranes Fractions Retention Concentration CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA |
title_short |
Avaliação de processos de separação por membranas para concentração e fracionamento de lignina |
title_full |
Avaliação de processos de separação por membranas para concentração e fracionamento de lignina |
title_fullStr |
Avaliação de processos de separação por membranas para concentração e fracionamento de lignina |
title_full_unstemmed |
Avaliação de processos de separação por membranas para concentração e fracionamento de lignina |
title_sort |
Avaliação de processos de separação por membranas para concentração e fracionamento de lignina |
author |
Mendes, Sophia Franciscani |
author_facet |
Mendes, Sophia Franciscani |
author_role |
author |
dc.contributor.none.fl_str_mv |
Reis, Miria Hespanhol Miranda http://lattes.cnpq.br/2087228956469914 Cardoso, Vicelma Luiz http://lattes.cnpq.br/7947426011712250 Pasquini, Daniel Morais, Luis Carlos de Lobosco, Vinicius |
dc.contributor.author.fl_str_mv |
Mendes, Sophia Franciscani |
dc.subject.por.fl_str_mv |
Lignina Concentração Membranas Frações Retenção Lignin Membranes Fractions Retention Concentration CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA |
topic |
Lignina Concentração Membranas Frações Retenção Lignin Membranes Fractions Retention Concentration CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA |
description |
Lignin is a by-product of pulp and paper industries that has been generally used for power generation. However, biorefineries based on lignocellulosic materials have sought to develop high value-added renewable products from biomass processing, bringing advantages such as low cost and easy availability of the raw material. One way of recovering the lignin is by means of membrane separation processes. The main goal of this work was to determine the best operational conditions of the membrane filtration process for the concentration and fractionation of lignin present in liquid black liquor fractions. Micro and ultrafiltrations, in dead-end and cross-flow operations, with commercial polymeric and ceramic membranes, in sequential and direct processes, were employed to evaluate the fractionation capacity of different pretreated black liquor fractions, at different pH values, besides of powdered lignin solutions. The obtained permeates were characterized by total solids, soluble solids, lignin concentration, antioxidant potential, colorimetry, 13C NMR, GPC, FTIR-ATR and/or TGA. Microfiltration of the pH 9.0 liquid fraction was performed in dead-end in a 0.22 µm polymeric membrane, with a stabilized flux of 100 L h-1 m-2. The 0.22 µm membrane permeate was sequentially ultrafiltrated in a 5 kDa membrane, also in dead-end, with relatively low stabilized flux, 0.8 L h-1 m-2. Also, in dead-end operation, the liquid fraction was microfiltrated in a 0.05 µm membrane, after centrifugation, with a stabilized flux of 1.3 L h-1 m-2, followed by 10 kDa ultrafiltration, with a stabilized flux of 5.0 L h-1 m-2. Despite the higher flux in the 10 kDa membrane ultrafiltration, solids retention was 17%. In order to increase the permeate flux, a cross-flow ultrafiltration in a 5 kDa membrane was then performed. Although the initial flux increased, there was no significant increase in final cross-flow flux when compared to dead end (0.9 L h-1 m-2 versus 0.8 L h-1 m-2). By comparison, a powdered lignin solution at a concentration of 47 g L-1 was also ultrafiltrate in cross-flow in a 5kDa polymeric membrane. The final flux of this process was 16 L h-1 m-2 with 97% solids retention, and flux difference is probably associated with feed lower solids content. Proceeding in cross-flow operation, a commercial 20 kDa alumina ceramic membrane was tested for liquid fractions at three different pH values. The pH 9.0 and 9.5 fractions had the highest final fluxes, 5.4 and 5.5 L h-1 m-2, respectively, and presented the lowest total solids concentration, the pH 10.0 fraction presented the lowest flux, 2.2 L h-1 m-2 and the highest concentration of total solids. Ultrafiltration of the pH 9.0 fraction had the highest lignin retention among the tested fractions (83%), as well as clarified permeated in relation to the feed. GPC analysis confirmed lignin fractionation with membrane treatment, obtaining lignin with more homogeneous molecular mass in the permeate. The 20 kDa membrane was also tested for ultrafiltration of a 10% lignin powder solution with final flux of 6.7 L h-1 m-2 and 75% lignin retention. Thus, as in the polymeric membrane, the permeate flux for lignin solution is higher than with the liquid fractions, evidencing the influence of other compounds present in these fractions. Hollow fiber membranes were also tested for filtration of 10% lignin powder solution. The stabilized flux for dead-end in alumina hollow fibers was 2.3 L h-1 m-2 and for cross-flow in a composite alumina with dolomite hollow fiber was 10.3 L h-1 m-2. Despite the difference in flux both fibers retained only 13% of solids and presented poor lignin retention. Thus, the use of commercial 20 kDa ceramic membranes proves to be more operationally viable due to the obtained solids flow and retention values. The pH 9.00 liquid fraction is the most promising for lignin concentration due to its relatively high flow and high efficiency for lignin separation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-25T22:26:10Z 2020-03-25T22:26:10Z 2020-01-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MENDES, Sophia Franciscani. Avaliação de processos de separação por membranas para concentração e fracionamento de lignina. 2020. 107 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, 2018. DOI http://doi.org/10.14393/ufu.di.2020.47. https://repositorio.ufu.br/handle/123456789/29045 http://doi.org/10.14393/ufu.di.2020.47 |
identifier_str_mv |
MENDES, Sophia Franciscani. Avaliação de processos de separação por membranas para concentração e fracionamento de lignina. 2020. 107 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, 2018. DOI http://doi.org/10.14393/ufu.di.2020.47. |
url |
https://repositorio.ufu.br/handle/123456789/29045 http://doi.org/10.14393/ufu.di.2020.47 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Química |
publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Engenharia Química |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
instname_str |
Universidade Federal de Uberlândia (UFU) |
instacron_str |
UFU |
institution |
UFU |
reponame_str |
Repositório Institucional da UFU |
collection |
Repositório Institucional da UFU |
repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
_version_ |
1813711445198635008 |