Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos

Detalhes bibliográficos
Autor(a) principal: Simão, Bárbara Lopes
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/28333
http://dx.doi.org/10.14393/ufu.di.2018.89
Resumo: The use of microalgae and cyanobacteria as an important source for biofuels and value-added chemicals has been widely reported as a promising sustainable technology. As a result of this fact, renewable energy sources, such as biomass, have a fundamental importance in the energy, environment and socioeconomic context. Due to they are among the fastest growing photosynthetic microorganisms, they also have the ability to easily adapt to various climatic conditions and have high efficiency in fixing CO2. A Spirulina maxima is considered a potential raw material for fast pyrolysis due to its low lipid and high protein contents. Aromatic hydrocarbons, which are widely used in industry, are the main derivatives of protein pyrolysis. In this study, thermogravimetric analyses were performed and the activation energy values for biomass thermal degradation were identified using three methodologies: the Friedman and the Flynn-Wall-Ozawa isoconversional methods, and the Miura-Maki distributed activation energy model. The three methodologies resulted in similar mean values of activation energy, namely, 132.2, 143.77 and 130.04 kJ/mol, respectively, for the Flynn-Wall-Ozawa, Friedman and Miura-Maki models. The micropyrolysis of the pure biomass was analyzed at three different reaction temperatures (450, 550 and 650°C) and the composition of the vapor products was evaluated. The micropyrolysis performed at 650°C presented the highest yield of aromatic hydrocarbons and a decrease in oxygenated compounds. In addition, the heating rate was also varied in 1, 5, 10, 15, and 20 ° C / ms, and the composition of the vapors products was evalueted, it can be observed that there were no significant changes when the heating rate varied. Another parameter analyzed was the reaction time, analyzes were performed at three different reaction times (10, 20 and 30). So the composition of the vapors products generated was analyzed, with the increase of reaction time there was a decrease of the oxygenated compounds, however, there were no significant changes in the aromatic compounds. A Spirulina maxima was also subjected to catalytic micropyrolysis by the addition of two types of acid catalysts: zeolite ZSM-5 and niobic acid (HY-340). Under the conditions of this study, the addition of zeolite to microalgae yielded significant results in the production of aromatic hydrocarbons, i.e., the production volume was more than five-fold greater with the biomass-to-catalyst ratio of 1:10 than with the pure biomass. The catalytic effect of the niobium-based catalyst (HY-340) on the production of aromatic compounds was negligible. The niobium is little explored as a catalyst for biomass’s pyrolysis, but it is promising for studies, due to the niobium present high acidity and a significantly lower cost than the commercial zeolites. It is important to emphasize that the data collected in this work can be useful for reactor projects.
id UFU_f27c6316ff9496b87f395f604461e6f5
oai_identifier_str oai:repositorio.ufu.br:123456789/28333
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticosSpirulina maxima pyrolysis: activation energy values ​​and in-situ catalysis increasing selectivity for aromatic hydrocarbonsEngenharia QuímicaSpirulinaMicroalgaCianobacteriaPirólise catalítica in-situModelos de energia de ativaçãoAnálise termogravimétrica (TGA)Melhoramento do bio-óleoMicroalgaeCyanobacteriaIn-situ catalytic pyrolysisActivation energy modelsThermal gravimetric analysis (TGA)Upgrading of bio-oilCNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICAThe use of microalgae and cyanobacteria as an important source for biofuels and value-added chemicals has been widely reported as a promising sustainable technology. As a result of this fact, renewable energy sources, such as biomass, have a fundamental importance in the energy, environment and socioeconomic context. Due to they are among the fastest growing photosynthetic microorganisms, they also have the ability to easily adapt to various climatic conditions and have high efficiency in fixing CO2. A Spirulina maxima is considered a potential raw material for fast pyrolysis due to its low lipid and high protein contents. Aromatic hydrocarbons, which are widely used in industry, are the main derivatives of protein pyrolysis. In this study, thermogravimetric analyses were performed and the activation energy values for biomass thermal degradation were identified using three methodologies: the Friedman and the Flynn-Wall-Ozawa isoconversional methods, and the Miura-Maki distributed activation energy model. The three methodologies resulted in similar mean values of activation energy, namely, 132.2, 143.77 and 130.04 kJ/mol, respectively, for the Flynn-Wall-Ozawa, Friedman and Miura-Maki models. The micropyrolysis of the pure biomass was analyzed at three different reaction temperatures (450, 550 and 650°C) and the composition of the vapor products was evaluated. The micropyrolysis performed at 650°C presented the highest yield of aromatic hydrocarbons and a decrease in oxygenated compounds. In addition, the heating rate was also varied in 1, 5, 10, 15, and 20 ° C / ms, and the composition of the vapors products was evalueted, it can be observed that there were no significant changes when the heating rate varied. Another parameter analyzed was the reaction time, analyzes were performed at three different reaction times (10, 20 and 30). So the composition of the vapors products generated was analyzed, with the increase of reaction time there was a decrease of the oxygenated compounds, however, there were no significant changes in the aromatic compounds. A Spirulina maxima was also subjected to catalytic micropyrolysis by the addition of two types of acid catalysts: zeolite ZSM-5 and niobic acid (HY-340). Under the conditions of this study, the addition of zeolite to microalgae yielded significant results in the production of aromatic hydrocarbons, i.e., the production volume was more than five-fold greater with the biomass-to-catalyst ratio of 1:10 than with the pure biomass. The catalytic effect of the niobium-based catalyst (HY-340) on the production of aromatic compounds was negligible. The niobium is little explored as a catalyst for biomass’s pyrolysis, but it is promising for studies, due to the niobium present high acidity and a significantly lower cost than the commercial zeolites. It is important to emphasize that the data collected in this work can be useful for reactor projects.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoDissertação (Mestrado)O uso de microalgas e cianobactérias como fonte de produção de bicombustíveis e outros produtos químicos de interesse comercial tem sido largamente reportada como uma tecnologia sustentável promissora. Em decorrência desse fato, as fontes de energia renováveis, como a biomassa, têm papel fundamental no contexto energético, ambiental e sócioeconômico. Uma vez que as microalgas estão entre os microorganismos fotossintéticos de crescimento mais rápido, além de terem a capacidade de se adaptar facilmente a várias condições climáticas e alta eficiência na fixação de CO2. A Spirulina maxima é considerada uma potencial matéria-prima para pirólise rápida, pois é uma cianobactéria que possui baixo teor de lipídios e alta quantidade de proteínas. Os hidrocarbonetos aromáticos, largamente empregados na indústria são os principais derivados da pirólise de proteínas. Neste estudo, análises termogravimétricas foram realizadas e os parâmetros cinéticos referentes à degradação térmica da biomassa foram identificados segundo três metodologias; dentre elas dois modelos globais isoconversionais (Friedman e Flynn-Wall-Ozawa) e um de energia de ativação distribuída (Miura-Maki). Observou-se concordância entre os resultados de energia de ativação obtidos pelas três metodologias, ou seja, 132,62, 143,77 e 130,04 kJ/mol, respectivamente para os modelos de Flynn-Wall-Ozawa, Friedman e Miura-Maki . Foram realizadas análises de micropirólise para biomassa pura em três diferentes temperaturas de reação (450, 550 e 650°C); assim, a composição dos vapores formados foi avaliada. As análises realizadas a 650°C apresentaram o maior rendimento de hidrocarbonetos aromáticos além de uma redução de compostos oxigenados. Variou-se também a taxa de aquecimento em 1, 5, 10, 15, e 20ºC/ms; ao analisar a composição dos vapores pôde-se observar que não houve mudanças significativas ao variar a taxa de aquecimento. Outro parâmetro analisado foi o tempo de reação, sendo realizadas análises em três diferentes tempos de reação (10, 20 e 30 s); assim analisou-se a composição dos vapores gerados. Com o aumento de tempo de reação houve uma diminuição dos compostos oxigenados, entretanto não houve mudanças significativas nos compostos aromáticos. Foi realizada também a micropirólise catalítica da Spirulina maxima com adição de dois tipos de catalisadores ácidos: zeolita (ZSM-5) e nióbio (HY-340). Nas condições estudadas, a Spirulina maxima adicionada de zeólita apresentou resultados expressivos para a seletividade de hidrocarbonetos aromáticos, para a razão biomassa/catalisador de 1:10, a produção foi aumentada em mais de cinco vezes em relação à biomassa pura. O catalisador à base de nióbio (HY-340) não apresentou efeito catalítico significativo em relação à produção de aromáticos. O nióbio é pouco explorado como catalisador para pirólise de biomassas, mas é promissor para estudos, pois apresenta alta acidez e um custo significativamente menor que as zeólitas comerciais. É importante ressaltar que os dados coletados no trabalho em questão podem ser útei para projetos de reatores.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia QuímicaCardoso, Cassia ReginaAtaíde, Carlos HenriqueVieira, Luiz Gustavo MartinsCoutinho Filho, UbirajaraCarvalho, Wender SantanaSimão, Bárbara Lopes2020-01-15T11:18:47Z2020-01-15T11:18:47Z2017-08-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSIMÃO, Bárbara Lopes. Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos. 2017. 101 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, Uberlândia, 2017. DOI http://dx.doi.org/10.14393/ufu.di.2018.89.https://repositorio.ufu.br/handle/123456789/28333http://dx.doi.org/10.14393/ufu.di.2018.89porhttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2020-01-16T06:11:08Zoai:repositorio.ufu.br:123456789/28333Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2020-01-16T06:11:08Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos
Spirulina maxima pyrolysis: activation energy values ​​and in-situ catalysis increasing selectivity for aromatic hydrocarbons
title Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos
spellingShingle Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos
Simão, Bárbara Lopes
Engenharia Química
Spirulina
Microalga
Cianobacteria
Pirólise catalítica in-situ
Modelos de energia de ativação
Análise termogravimétrica (TGA)
Melhoramento do bio-óleo
Microalgae
Cyanobacteria
In-situ catalytic pyrolysis
Activation energy models
Thermal gravimetric analysis (TGA)
Upgrading of bio-oil
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
title_short Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos
title_full Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos
title_fullStr Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos
title_full_unstemmed Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos
title_sort Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos
author Simão, Bárbara Lopes
author_facet Simão, Bárbara Lopes
author_role author
dc.contributor.none.fl_str_mv Cardoso, Cassia Regina
Ataíde, Carlos Henrique
Vieira, Luiz Gustavo Martins
Coutinho Filho, Ubirajara
Carvalho, Wender Santana
dc.contributor.author.fl_str_mv Simão, Bárbara Lopes
dc.subject.por.fl_str_mv Engenharia Química
Spirulina
Microalga
Cianobacteria
Pirólise catalítica in-situ
Modelos de energia de ativação
Análise termogravimétrica (TGA)
Melhoramento do bio-óleo
Microalgae
Cyanobacteria
In-situ catalytic pyrolysis
Activation energy models
Thermal gravimetric analysis (TGA)
Upgrading of bio-oil
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
topic Engenharia Química
Spirulina
Microalga
Cianobacteria
Pirólise catalítica in-situ
Modelos de energia de ativação
Análise termogravimétrica (TGA)
Melhoramento do bio-óleo
Microalgae
Cyanobacteria
In-situ catalytic pyrolysis
Activation energy models
Thermal gravimetric analysis (TGA)
Upgrading of bio-oil
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA
description The use of microalgae and cyanobacteria as an important source for biofuels and value-added chemicals has been widely reported as a promising sustainable technology. As a result of this fact, renewable energy sources, such as biomass, have a fundamental importance in the energy, environment and socioeconomic context. Due to they are among the fastest growing photosynthetic microorganisms, they also have the ability to easily adapt to various climatic conditions and have high efficiency in fixing CO2. A Spirulina maxima is considered a potential raw material for fast pyrolysis due to its low lipid and high protein contents. Aromatic hydrocarbons, which are widely used in industry, are the main derivatives of protein pyrolysis. In this study, thermogravimetric analyses were performed and the activation energy values for biomass thermal degradation were identified using three methodologies: the Friedman and the Flynn-Wall-Ozawa isoconversional methods, and the Miura-Maki distributed activation energy model. The three methodologies resulted in similar mean values of activation energy, namely, 132.2, 143.77 and 130.04 kJ/mol, respectively, for the Flynn-Wall-Ozawa, Friedman and Miura-Maki models. The micropyrolysis of the pure biomass was analyzed at three different reaction temperatures (450, 550 and 650°C) and the composition of the vapor products was evaluated. The micropyrolysis performed at 650°C presented the highest yield of aromatic hydrocarbons and a decrease in oxygenated compounds. In addition, the heating rate was also varied in 1, 5, 10, 15, and 20 ° C / ms, and the composition of the vapors products was evalueted, it can be observed that there were no significant changes when the heating rate varied. Another parameter analyzed was the reaction time, analyzes were performed at three different reaction times (10, 20 and 30). So the composition of the vapors products generated was analyzed, with the increase of reaction time there was a decrease of the oxygenated compounds, however, there were no significant changes in the aromatic compounds. A Spirulina maxima was also subjected to catalytic micropyrolysis by the addition of two types of acid catalysts: zeolite ZSM-5 and niobic acid (HY-340). Under the conditions of this study, the addition of zeolite to microalgae yielded significant results in the production of aromatic hydrocarbons, i.e., the production volume was more than five-fold greater with the biomass-to-catalyst ratio of 1:10 than with the pure biomass. The catalytic effect of the niobium-based catalyst (HY-340) on the production of aromatic compounds was negligible. The niobium is little explored as a catalyst for biomass’s pyrolysis, but it is promising for studies, due to the niobium present high acidity and a significantly lower cost than the commercial zeolites. It is important to emphasize that the data collected in this work can be useful for reactor projects.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-24
2020-01-15T11:18:47Z
2020-01-15T11:18:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SIMÃO, Bárbara Lopes. Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos. 2017. 101 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, Uberlândia, 2017. DOI http://dx.doi.org/10.14393/ufu.di.2018.89.
https://repositorio.ufu.br/handle/123456789/28333
http://dx.doi.org/10.14393/ufu.di.2018.89
identifier_str_mv SIMÃO, Bárbara Lopes. Pirólise de Spirulina maxima: valores de energia de ativação e catálise in-situ aumentando a seletividade para hidrocarbonetos aromáticos. 2017. 101 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, Uberlândia, 2017. DOI http://dx.doi.org/10.14393/ufu.di.2018.89.
url https://repositorio.ufu.br/handle/123456789/28333
http://dx.doi.org/10.14393/ufu.di.2018.89
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Química
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Química
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1813711544803917824