Lagrangian modeling of droplet evaporation

Detalhes bibliográficos
Autor(a) principal: Pinheiro, Abgail Paula
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFU
Texto Completo: https://repositorio.ufu.br/handle/123456789/22510
http://dx.doi.org/10.14393/ufu.di.2018.1180
Resumo: Evaporation of liquid droplets in high temperature gas environment is of great importance in many engineering applications. Accurate droplet evaporation predictions are crucial in modeling spray combustion, since it is considered a rate limiting process. For this reason, the present dissertation aims are, first, to implement and validate Lagrangian droplet evaporation models that are usually used in spray calculations, including equilibrium and non-equilibrium formulations, and, second, to use these models to pursue a deeper insight on the physical phenomena that may be involved in droplet evaporation processes. In order to validate and assess these theoretical model predictions, an in-house code was developed and diameter evolution results from the numerical simulations are compared to experimental data. First, the model performance is evaluated for water in a case of low evaporation rate and, then, it is evaluated for n-heptane in moderate and high evaporation rates using recent experimental data acquired with a new technique. The Abramzon-Sirignano model is the only one which does not overestimate the evaporation rate for any ambient condition tested, when compared with experimental rate. From the results, it is also revealed that, when a correction factor for energy transfer reduction due to evaporation is incorporated in the classical evaporation model, the predictions from this model and the non-equilibrium one cannot be differentiated, even if the initial droplet diameter is small. Furthermore, the incorporation of natural and forced convection effects on the droplet evaporation rate, by using an empirical correlation, is investigated, showing that including the Grashof number into the Ranz-Marshall correlation actually overestimates the evaporation rate for atmospheric pressure. Finally, the effects of ambient conditions on ethanol evaporation are investigated. Under ambient temperatures higher than the threshold temperature, the evaporation rate is enhanced with the increase of ambient pressure, contrary to what happens for cases when the ambient temperature is lower than the threshold temperature.
id UFU_f6c7f0bbbf1616b38a864ce6d8816649
oai_identifier_str oai:repositorio.ufu.br:123456789/22510
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Lagrangian modeling of droplet evaporationModelagem lagrangiana de evaporação de gotaEngenharia mecânicaEvaporação - Modelos matemáticosEvaporação de gotasSpraySimulação numéricaAbordagem lagrangeanaDroplet evaporationSprayNumerical simulationLagrangian approachCNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTEEvaporation of liquid droplets in high temperature gas environment is of great importance in many engineering applications. Accurate droplet evaporation predictions are crucial in modeling spray combustion, since it is considered a rate limiting process. For this reason, the present dissertation aims are, first, to implement and validate Lagrangian droplet evaporation models that are usually used in spray calculations, including equilibrium and non-equilibrium formulations, and, second, to use these models to pursue a deeper insight on the physical phenomena that may be involved in droplet evaporation processes. In order to validate and assess these theoretical model predictions, an in-house code was developed and diameter evolution results from the numerical simulations are compared to experimental data. First, the model performance is evaluated for water in a case of low evaporation rate and, then, it is evaluated for n-heptane in moderate and high evaporation rates using recent experimental data acquired with a new technique. The Abramzon-Sirignano model is the only one which does not overestimate the evaporation rate for any ambient condition tested, when compared with experimental rate. From the results, it is also revealed that, when a correction factor for energy transfer reduction due to evaporation is incorporated in the classical evaporation model, the predictions from this model and the non-equilibrium one cannot be differentiated, even if the initial droplet diameter is small. Furthermore, the incorporation of natural and forced convection effects on the droplet evaporation rate, by using an empirical correlation, is investigated, showing that including the Grashof number into the Ranz-Marshall correlation actually overestimates the evaporation rate for atmospheric pressure. Finally, the effects of ambient conditions on ethanol evaporation are investigated. Under ambient temperatures higher than the threshold temperature, the evaporation rate is enhanced with the increase of ambient pressure, contrary to what happens for cases when the ambient temperature is lower than the threshold temperature.Dissertação (Mestrado)A evaporação de gotas líquidas em ambientes gasosos com alta temperatura é de grande relevância em muitas aplicações de engenharia. Previsões precisas da evaporação de gotas são cruciais na modelagem de sprays reativos, uma vez que este é considerado um processo limitante. Portanto, os objetivos da presente dissertação são, primeiro, implementar e validar modelos lagrangianos de evaporação de gotas que são geralmente utilizados em estudos de spray, incluindo as formulações de equilíbrio e não equilíbrio, e, segundo, usar esses modelos para buscar uma visão mais profunda dos fenômenos físicos que podem estar envolvidos no processo de evaporação de gotas. Para validar e avaliar as previsões destes modelos teóricos, foi desenvolvido um código e a evolução do diâmetro da gota obtida por simulação numérica é comparada com dados experimentais. Primeiro, o desempenho dos modelos é avaliado para água em um caso de baixa taxa de evaporação e, em seguida, para n-heptano com taxa de evaporação moderada e alta usando dados experimentais obtidos recentemente por meio de uma nova técnica. O modelo de Abramzon-Sirignano é o único que não superestima a taxa de evaporação para quaisquer condições ambiente testadas, quando comparada com a taxa experimental. A partir dos resultados, também é revelado que, quando um fator de correção para a redução da transferência de energia devido à evaporação é incorporado ao modelo clássico de evaporação, as previsões deste modelo e do modelo de não equilíbrio não podem ser diferenciadas, mesmo quando o diâmetro inicial da gota é pequeno. Além disso, a incorporação de efeitos de convecção natural e forçada na taxa de evaporação, usando uma correlação empírica, é investigada, mostrando que a inclusão do número de Grashof na correlação de Ranz-Marshall na verdade superestima a taxa de evaporação para pressão atmosférica. Finalmente, os efeitos das condições ambientes na evaporação de etanol são investigados. Sob temperaturas ambientes superiores à temperatura limite, a taxa de evaporação aumenta com o aumento da pressão ambiente, contrariamente ao que acontece nos casos em que a temperatura ambiente é menor que a temperatura limite.Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Engenharia MecânicaVedovoto, João Marcelohttp://lattes.cnpq.br/5630598971511798Silveira Neto, Aristeu dahttp://lattes.cnpq.br/4650888739121183Souza, Francisco José dehttp://lattes.cnpq.br/1257320066520278Azevedo, João Luiz Filgueiras dehttp://lattes.cnpq.br/2266675048920917Serfaty, Ricardohttp://lattes.cnpq.br/5917199961355543Pinheiro, Abgail Paula2018-09-28T14:50:54Z2018-09-28T14:50:54Z2018-08-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPINHEIRO, Abgail Paula. Lagrangian modeling of droplet evaporation. 2018. 101 f. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2018. DOI http://dx.doi.org/10.14393/ufu.di.2018.1180https://repositorio.ufu.br/handle/123456789/22510http://dx.doi.org/10.14393/ufu.di.2018.1180enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2019-05-22T23:00:32Zoai:repositorio.ufu.br:123456789/22510Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2019-05-22T23:00:32Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Lagrangian modeling of droplet evaporation
Modelagem lagrangiana de evaporação de gota
title Lagrangian modeling of droplet evaporation
spellingShingle Lagrangian modeling of droplet evaporation
Pinheiro, Abgail Paula
Engenharia mecânica
Evaporação - Modelos matemáticos
Evaporação de gotas
Spray
Simulação numérica
Abordagem lagrangeana
Droplet evaporation
Spray
Numerical simulation
Lagrangian approach
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE
title_short Lagrangian modeling of droplet evaporation
title_full Lagrangian modeling of droplet evaporation
title_fullStr Lagrangian modeling of droplet evaporation
title_full_unstemmed Lagrangian modeling of droplet evaporation
title_sort Lagrangian modeling of droplet evaporation
author Pinheiro, Abgail Paula
author_facet Pinheiro, Abgail Paula
author_role author
dc.contributor.none.fl_str_mv Vedovoto, João Marcelo
http://lattes.cnpq.br/5630598971511798
Silveira Neto, Aristeu da
http://lattes.cnpq.br/4650888739121183
Souza, Francisco José de
http://lattes.cnpq.br/1257320066520278
Azevedo, João Luiz Filgueiras de
http://lattes.cnpq.br/2266675048920917
Serfaty, Ricardo
http://lattes.cnpq.br/5917199961355543
dc.contributor.author.fl_str_mv Pinheiro, Abgail Paula
dc.subject.por.fl_str_mv Engenharia mecânica
Evaporação - Modelos matemáticos
Evaporação de gotas
Spray
Simulação numérica
Abordagem lagrangeana
Droplet evaporation
Spray
Numerical simulation
Lagrangian approach
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE
topic Engenharia mecânica
Evaporação - Modelos matemáticos
Evaporação de gotas
Spray
Simulação numérica
Abordagem lagrangeana
Droplet evaporation
Spray
Numerical simulation
Lagrangian approach
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE
description Evaporation of liquid droplets in high temperature gas environment is of great importance in many engineering applications. Accurate droplet evaporation predictions are crucial in modeling spray combustion, since it is considered a rate limiting process. For this reason, the present dissertation aims are, first, to implement and validate Lagrangian droplet evaporation models that are usually used in spray calculations, including equilibrium and non-equilibrium formulations, and, second, to use these models to pursue a deeper insight on the physical phenomena that may be involved in droplet evaporation processes. In order to validate and assess these theoretical model predictions, an in-house code was developed and diameter evolution results from the numerical simulations are compared to experimental data. First, the model performance is evaluated for water in a case of low evaporation rate and, then, it is evaluated for n-heptane in moderate and high evaporation rates using recent experimental data acquired with a new technique. The Abramzon-Sirignano model is the only one which does not overestimate the evaporation rate for any ambient condition tested, when compared with experimental rate. From the results, it is also revealed that, when a correction factor for energy transfer reduction due to evaporation is incorporated in the classical evaporation model, the predictions from this model and the non-equilibrium one cannot be differentiated, even if the initial droplet diameter is small. Furthermore, the incorporation of natural and forced convection effects on the droplet evaporation rate, by using an empirical correlation, is investigated, showing that including the Grashof number into the Ranz-Marshall correlation actually overestimates the evaporation rate for atmospheric pressure. Finally, the effects of ambient conditions on ethanol evaporation are investigated. Under ambient temperatures higher than the threshold temperature, the evaporation rate is enhanced with the increase of ambient pressure, contrary to what happens for cases when the ambient temperature is lower than the threshold temperature.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-28T14:50:54Z
2018-09-28T14:50:54Z
2018-08-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PINHEIRO, Abgail Paula. Lagrangian modeling of droplet evaporation. 2018. 101 f. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2018. DOI http://dx.doi.org/10.14393/ufu.di.2018.1180
https://repositorio.ufu.br/handle/123456789/22510
http://dx.doi.org/10.14393/ufu.di.2018.1180
identifier_str_mv PINHEIRO, Abgail Paula. Lagrangian modeling of droplet evaporation. 2018. 101 f. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Federal de Uberlândia, Uberlândia, 2018. DOI http://dx.doi.org/10.14393/ufu.di.2018.1180
url https://repositorio.ufu.br/handle/123456789/22510
http://dx.doi.org/10.14393/ufu.di.2018.1180
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Mecânica
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Mecânica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1805569673798877184