DETERMINATION OF NUTRITIONAL DEFICIENCY LEVEL OF NITROGEN IN BEAN USING ARTIFICIAL NEURAL NETWORKS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Engenharia na Agricultura |
Texto Completo: | https://periodicos.ufv.br/reveng/article/view/273 |
Resumo: | The objective of this study was to identify nutritional deficiency of nitrogen in bean using spectral indices and techniques of digital image processing. For that it was developed artificial neural networks with different numbers of neurons. Following the acquisition of images by a digital camera, they were cut into blocks with size of 20x20 and 40x40 pixels. Artificial neural networks were able to identify the different levels of nitrogen applied in the plants. The results using images acquired with 30 and 40 days after emergence were not different. |
id |
UFV-2_dc65f76b839d3d952f091466cc241def |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufv.br:article/273 |
network_acronym_str |
UFV-2 |
network_name_str |
Engenharia na Agricultura |
repository_id_str |
|
spelling |
DETERMINATION OF NUTRITIONAL DEFICIENCY LEVEL OF NITROGEN IN BEAN USING ARTIFICIAL NEURAL NETWORKSDETERMINAÇÃO DO NÍVEL DE DEFICIÊNCIA NUTRICIONAL DE NITROGÊNIO NO FEIJOEIRO UTILIZANDO REDES NEURAIS ARTIFICIAISagricultura de precisãoPhaseolus vulgarisprocessamento de imagens digitais e sensoriamento remotoThe objective of this study was to identify nutritional deficiency of nitrogen in bean using spectral indices and techniques of digital image processing. For that it was developed artificial neural networks with different numbers of neurons. Following the acquisition of images by a digital camera, they were cut into blocks with size of 20x20 and 40x40 pixels. Artificial neural networks were able to identify the different levels of nitrogen applied in the plants. The results using images acquired with 30 and 40 days after emergence were not different.O objetivo desse trabalho foi identificar a deficiência nutricional de nitrogênio no feijoeiro utilizando índices espectrais e técnicas de processamento de imagens digitais. Para isso, foram desenvolvidas redes neurais artificiais com diferentes números de neurônios. Após a aquisição das imagens por uma câmera digital, elas eram cortadas em blocos com tamanho de 20x20 e 40x40 pixels. As redes neurais artificiais conseguiram identificar as diferentes doses de nitrogênio aplicados nas plantas. Os resultados obtidos usando imagens adquiridas com 30 e 40 dias após a emergência não foram diferentes.Universidade Federal de Viçosa - UFV2012-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufv.br/reveng/article/view/27310.13083/reveng.v20i6.303Engineering in Agriculture; Vol. 20 No. 6 (2012); 512-518Revista Engenharia na Agricultura - REVENG; v. 20 n. 6 (2012); 512-5182175-68131414-398410.13083/reveng.v20i6reponame:Engenharia na Agriculturainstname:Universidade Federal de Viçosa (UFV)instacron:UFVporhttps://periodicos.ufv.br/reveng/article/view/273/204Baesso, Murilo MesquitaVarella, Carlos Alberto AlvesMartins, Guilherme AugustoModolo, Alcir JoséBrandelero, Evandro Martininfo:eu-repo/semantics/openAccess2023-01-19T13:06:51Zoai:ojs.periodicos.ufv.br:article/273Revistahttps://periodicos.ufv.br/revengPUBhttps://periodicos.ufv.br/reveng/oairevistaengenharianagricultura@gmail.com||andrerosa@ufv.br||tramitacao.reveng@gmail.com|| reveng@ufv.br2175-68131414-3984opendoar:2023-01-19T13:06:51Engenharia na Agricultura - Universidade Federal de Viçosa (UFV)false |
dc.title.none.fl_str_mv |
DETERMINATION OF NUTRITIONAL DEFICIENCY LEVEL OF NITROGEN IN BEAN USING ARTIFICIAL NEURAL NETWORKS DETERMINAÇÃO DO NÍVEL DE DEFICIÊNCIA NUTRICIONAL DE NITROGÊNIO NO FEIJOEIRO UTILIZANDO REDES NEURAIS ARTIFICIAIS |
title |
DETERMINATION OF NUTRITIONAL DEFICIENCY LEVEL OF NITROGEN IN BEAN USING ARTIFICIAL NEURAL NETWORKS |
spellingShingle |
DETERMINATION OF NUTRITIONAL DEFICIENCY LEVEL OF NITROGEN IN BEAN USING ARTIFICIAL NEURAL NETWORKS Baesso, Murilo Mesquita agricultura de precisão Phaseolus vulgaris processamento de imagens digitais e sensoriamento remoto |
title_short |
DETERMINATION OF NUTRITIONAL DEFICIENCY LEVEL OF NITROGEN IN BEAN USING ARTIFICIAL NEURAL NETWORKS |
title_full |
DETERMINATION OF NUTRITIONAL DEFICIENCY LEVEL OF NITROGEN IN BEAN USING ARTIFICIAL NEURAL NETWORKS |
title_fullStr |
DETERMINATION OF NUTRITIONAL DEFICIENCY LEVEL OF NITROGEN IN BEAN USING ARTIFICIAL NEURAL NETWORKS |
title_full_unstemmed |
DETERMINATION OF NUTRITIONAL DEFICIENCY LEVEL OF NITROGEN IN BEAN USING ARTIFICIAL NEURAL NETWORKS |
title_sort |
DETERMINATION OF NUTRITIONAL DEFICIENCY LEVEL OF NITROGEN IN BEAN USING ARTIFICIAL NEURAL NETWORKS |
author |
Baesso, Murilo Mesquita |
author_facet |
Baesso, Murilo Mesquita Varella, Carlos Alberto Alves Martins, Guilherme Augusto Modolo, Alcir José Brandelero, Evandro Martin |
author_role |
author |
author2 |
Varella, Carlos Alberto Alves Martins, Guilherme Augusto Modolo, Alcir José Brandelero, Evandro Martin |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Baesso, Murilo Mesquita Varella, Carlos Alberto Alves Martins, Guilherme Augusto Modolo, Alcir José Brandelero, Evandro Martin |
dc.subject.por.fl_str_mv |
agricultura de precisão Phaseolus vulgaris processamento de imagens digitais e sensoriamento remoto |
topic |
agricultura de precisão Phaseolus vulgaris processamento de imagens digitais e sensoriamento remoto |
description |
The objective of this study was to identify nutritional deficiency of nitrogen in bean using spectral indices and techniques of digital image processing. For that it was developed artificial neural networks with different numbers of neurons. Following the acquisition of images by a digital camera, they were cut into blocks with size of 20x20 and 40x40 pixels. Artificial neural networks were able to identify the different levels of nitrogen applied in the plants. The results using images acquired with 30 and 40 days after emergence were not different. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12-27 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufv.br/reveng/article/view/273 10.13083/reveng.v20i6.303 |
url |
https://periodicos.ufv.br/reveng/article/view/273 |
identifier_str_mv |
10.13083/reveng.v20i6.303 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufv.br/reveng/article/view/273/204 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa - UFV |
dc.source.none.fl_str_mv |
Engineering in Agriculture; Vol. 20 No. 6 (2012); 512-518 Revista Engenharia na Agricultura - REVENG; v. 20 n. 6 (2012); 512-518 2175-6813 1414-3984 10.13083/reveng.v20i6 reponame:Engenharia na Agricultura instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
Engenharia na Agricultura |
collection |
Engenharia na Agricultura |
repository.name.fl_str_mv |
Engenharia na Agricultura - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
revistaengenharianagricultura@gmail.com||andrerosa@ufv.br||tramitacao.reveng@gmail.com|| reveng@ufv.br |
_version_ |
1800211144982396928 |